We have examined the electronic properties of zinc-doped cubic boron nitride (cBN) thin films prepared by sputter deposition. The electric conductivity of films deposited in pure Ar increased as the concentration of zinc dopant increased, and hole conduction was identified by the measurement of thermoelectric currents. It was also found that the conductivity increment in such films was accompanied by a linear increase in the B(B+N) ratio. At the same time, no modification of the composition and the conductivity by incorporated zinc was observed when film growth took place in presence of nitrogen gas. The effect of the excess boron on the conductivity emerged only when films show semi-insulating behavior. These results suggest that Zn substitution for nitrogen causes high electric conductivity of cBN. The electric contact between Ti electrode and semiconducting cBN was examined by the transfer length method, and Ohmic conduction was observed in the TicBN contact. The specific contact resistance was affected by the specific resistance of cBN films, and it was reduced from 105to100Ωcm2 by increasing the concentration of incorporated Zn.

1.
H.
Morkoç
,
Nitride Semiconductors and Devices
(
Springer
,
New York
,
1999
).
2.
D.
Litvinov
,
C. A.
Taylor
 II
, and
R.
Clarke
,
Diamond Relat. Mater.
7
,
360
(
1998
).
3.
J. B.
MacNaughton
,
A.
Moewes
,
R. G.
Wilks
,
X. T.
Zhou
,
T. K.
Sham
,
T.
Taniguchi
,
K.
Watanabe
,
C. Y.
Chan
,
W. J.
Zhang
,
I.
Bello
,
S. T.
Lee
, and
H.
Hofsäss
,
Phys. Rev. B
72
,
195113
(
2005
).
4.
S.
Noor Mohammad
,
Solid-State Electron.
46
,
203
(
2002
).
5.
T.
Sugino
,
S.
Kawasaki
,
K.
Tanioka
, and
J.
Shirafuji
,
Appl. Phys. Lett.
71
,
2704
(
1997
).
6.
S.
Komatsu
,
A.
Okudo
,
D.
Kazami
,
D.
Golberg
,
Y. B.
Li
,
Y.
Moriyoshi
,
M.
Shiratani
, and
K.
Okada
,
J. Phys. Chem. B
108
,
5182
(
2004
).
7.
M. J.
Powers
,
M. C.
Benjamin
,
L. M.
Porter
,
R. J.
Nemanich
,
R. F.
Davis
, and
J. J.
Cuomo
,
Appl. Phys. Lett.
67
,
3912
(
1995
).
8.
O.
Mishima
,
E.
Koh
,
J.
Tanaka
, and
S.
Yamaoka
,
Appl. Phys. Lett.
53
,
962
(
1988
).
9.
T.
Taniguchi
,
T.
Teraji
,
S.
Koizumi
,
K.
Watanabe
, and
S.
Yamaoka
,
Jpn. J. Appl. Phys., Part 2
41
,
L109
(
2002
).
10.
M.
Lu
,
A.
Bousetta
,
A.
Bensaoula
,
K.
Waters
, and
J. A.
Schultz
,
Appl. Phys. Lett.
68
,
622
(
1996
).
11.
C.
Ronning
,
A. D.
Banks
,
B. L.
McCarson
,
R.
Schlesser
,
Z.
Sitar
,
R. F.
Davis
,
B. L.
Ward
, and
R. J.
Nemanich
,
J. Appl. Phys.
84
,
5046
(
1998
).
12.
H.
Oba
,
K.
Nose
, and
T.
Yoshida
,
Surf. Coat. Technol.
201
,
5502
(
2006
).
13.
K.
Nose
,
K.
Tachibana
, and
T.
Yoshida
,
Appl. Phys. Lett.
83
,
943
(
2003
).
14.
K.
Nose
,
H.
Oba
, and
T.
Yoshida
,
Appl. Phys. Lett.
89
,
112124
(
2006
).
15.
K.
Nose
,
H. S.
Yang
,
H.
Oba
, and
T.
Yoshida
,
Diamond Relat. Mater.
14
,
1960
(
2005
).
16.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 2nd ed. (
Wiley
,
New York
,
1998
), p.
141
.
17.
W.
Orellana
and
H.
Chacham
,
Phys. Rev. B
63
,
125205
(
2001
).
18.
V. A.
Gubanov
,
Z. W.
Lu
,
B. M.
Klein
, and
C. Y.
Fong
,
Phys. Rev. B
53
,
4377
(
1996
).
19.
I.
Jimėnez
,
A. F.
Jankowski
,
L. J.
Terminello
,
D. G. J.
Sutherl
,
J. A.
Carlisle
,
G. L.
Doll
,
W. M.
Tong
,
D. K.
Shuh
, and
F. J.
Himpsel
,
Phys. Rev. B
55
,
12025
(
1997
).
20.
K.
Watanabe
,
T.
Taniguchi
,
T.
Kuroda
, and
H.
Kanda
,
Appl. Phys. Lett.
89
,
141902
(
2006
).
21.
J. C.
Phillips
,
Bonds and Bands in Semiconductors
(
Academic
,
New York
,
1973
), p.
238
.
22.
Y. N.
Xu
and
W. Y.
Ching
,
Phys. Rev. B
44
,
7787
(
1994
).
You do not currently have access to this content.