We investigated the behavior of the forward bias current-voltage-temperature (IVT) characteristics of inhomogeneous (NiAu)Al0.3Ga0.7NAlNGaN heterostructures in the temperature range of 295415K. The experimental results show that all forward bias semilogarithmic IV curves for the different temperatures have a nearly common cross point at a certain bias voltage, even with finite series resistance. At this cross point, the sample current is temperature independent. We also found that the values of series resistance (Rs) that were obtained from Cheung’s method are strongly dependent on temperature and the values abnormally increased with increasing temperature. Moreover, the ideality factor (n), zero-bias barrier height (ΦB0) obtained from IV curves, and Rs were found to be strongly temperature dependent and while ΦB0 increases, n decreases with increasing temperature. Such behavior of ΦB0 and n is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of the barrier heights (BHs) at the metal∕semiconductor interface. We attempted to draw a ΦB0 versus q2kT plot in order to obtain evidence of the GD of BHs, and the values of Φ¯B0=1.63eV and σ0=0.217V for the mean barrier height and standard deviation at a zero bias, respectively, were obtained from this plot. Therefore, a modified ln(I0T2)q2σ022(kT)2 versus qkT plot gives ΦB0 and Richardson constant A* as 1.64eV and 34.25Acm2K2, respectively, without using the temperature coefficient of the barrier height. The Richardson constant value of 34.25Acm2K2 is very close to the theoretical value of 33.74Acm2K2 for undoped Al0,3Ga0,7N. Therefore, it has been concluded that the temperature dependence of the forward IV characteristics of the (NiAu)Al0.3Ga0.7AlNGaN heterostructures can be successfully explained based on the thermionic emission mechanism with the GD of BHs.

1.
T.
Hashizume
,
S.
Ootomo
,
S.
Oyama
,
M.
Konishi
, and
H.
Hasegawa
,
J. Vac. Sci. Technol. B
19
,
1675
(
2001
).
2.
J. W.
Johnson
 et al.,
Solid-State Electron.
46
,
513
(
2002
).
3.
N.
Miura
 et al.,
Solid-State Electron.
48
,
689
(
2004
).
4.
T.
Sawada
,
Y.
Izumi
,
N.
Kimura
,
K.
Suzuki
,
K.
Imai
,
S.-W.
Kim
, and
T.
Suzuki
,
Appl. Surf. Sci.
216
,
197
(
2003
).
5.
S.
Çörekçi
,
M. K.
Öztürk
,
B.
Akaoğlu
,
M.
Çakmak
,
S.
Özçelik
, and
E.
Özbay
,
J. Appl. Phys.
101
,
123502
(
2007
).
6.
T.
Tut
,
N.
Biyikli
,
I.
Kimukin
,
T.
Kartaloğlu
,
O.
Aytur
,
M. S.
Unlu
, and
E.
Ozbay
,
Solid-State Electron.
49
,
117
(
2005
).
7.
D. J.
As
,
S.
Potthast
,
J.
Fernandez
,
K.
Lischka
,
H.
Nagasawa
, and
M.
Abe
,
Microelectron. Eng.
83
,
34
(
2006
).
8.
H.
Hasegawa
,
Curr. Appl. Phys.
7
,
318
(
2007
).
9.
T.
Sawada
,
Y.
Ito
,
N.
Kimura
,
K.
Imai
,
K.
Sukuzi
, and
S.
Sakai
,
Appl. Surf. Sci.
190
,
326
(
2002
).
10.
Y. C.
Lee
,
Z.
Hassan
,
M. J.
Abdullah
,
M. R.
Hashim
, and
K.
Ibrahim
,
Microelectron. Eng.
81
,
262
(
2005
).
11.
B. M.
Green
,
K. K.
Chu
,
E. M.
Chumbes
,
J. A.
Smart
,
J. M.
Shealy
, and
L. F.
Eastman
,
IEEE Electron Device Lett.
21
,
268
(
2000
).
12.
S.
Zeyrek
,
Ş.
Altındal
,
H.
Yüzer
, and
M. M.
Bülbül
,
Appl. Surf. Sci.
252
,
2999
(
2006
).
13.
T.
Mizutani
,
Y.
Ohno
,
M.
Akita
,
S.
Kishimoto
, and
K.
Maezawa
,
Phys. Status Solidi A
194
,
447
(
2002
).
14.
T.
Hashizume
,
S.
Ootomo
, and
H.
Hasegawa
,
Appl. Phys. Lett.
83
,
2952
(
2003
).
15.
H.
Hasegawa
,
Y.
Koyama
, and
T.
Hashizume
,
Jpn. J. Appl. Phys., Part 1
38
,
2634
(
1999
).
16.
C. R.
Crowell
and
S. M.
Sze
,
J. Appl. Phys.
36
,
3212
(
1965
).
17.
H. C.
Card
and
E. H.
Rhoderick
,
J. Phys. D
4
,
1589
(
1971
).
18.
Ş.
Altındal
,
S.
Karadeniz
,
N.
Tuğluoğlu
, and
A.
Tataroğlu
,
Solid-State Electron.
47
,
1847
(
2003
).
19.
İ.
Dökme
and
Ş.
Altındal
,
Semicond. Sci. Technol.
21
,
1053
(
2006
).
20.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Willey
,
New York
,
1981
).
21.
E. H.
Rhoderick
and
R. H.
Williams
,
Metal Semiconductor Contacts
, 2nd ed. (
Clarendon
,
Oxford
,
1988
).
22.
A.
Tataroğlu
,
Ş.
Altındal
, and
M. M.
Bülbül
,
Microelectron. Eng.
81
,
140
(
2005
).
23.
P.
Chattopadhyay
and
B.
Raychaudhuri
,
Solid-State Electron.
35
,
605
(
1993
).
24.
S.
Chand
and
J.
Kumar
,
Semicond. Sci. Technol.
11
,
1203
(
1996
).
25.
S.
Chand
and
J.
Kumar
,
Appl. Phys. A: Mater. Sci. Process.
65
,
497
(
1997
).
26.
Ş.
Karataş
,
Ş.
Altındal
,
A.
Türüt
, and
A.
Özmen
,
Appl. Surf. Sci.
217
,
250
(
2003
).
27.
S.
Zhu
,
R. L.
Van Meirhaeghe
,
C.
Detavernier
,
G. P.
Ru
,
B. Z.
Li
, and
F.
Cardon
,
Solid State Commun.
112
,
611
(
1999
).
28.
J. H.
Werner
and
H. H.
Guttler
,
J. Appl. Phys.
69
,
1522
(
1991
).
29.
J. H.
Werner
and
H. H.
Guttler
,
Phys. Scr.
T39
,
258
(
1991
).
30.
H.
Norde
,
J. Appl. Phys.
50
,
5052
(
1979
).
31.
K.
Sato
and
Y.
Yasamura
,
J. Appl. Phys.
58
,
3655
(
1985
).
32.
S. K.
Cheung
and
N. W.
Cheung
,
Appl. Phys. Lett.
49
,
85
(
1986
).
33.
H.
Kim
,
M.
Schuette
,
H.
Jung
and
J.
Song
,
Appl. Phys. Lett.
89
,
053516
(
2006
);
A. J.
Sierakowski
and
L. F.
Eastman
,
J. Appl. Phys.
86
,
3398
(
1999
).
34.
J.
Osvald
and
Zs. J.
Horvath
,
Appl. Surf. Sci.
234
,
349
(
2004
).
35.
S.
Chand
and
S.
Bala
,
Semicond. Sci. Technol.
20
,
1143
(
2005
);
S.
Chand
,
Semicond. Sci. Technol.
19
,
82
(
2004
).
36.
S.
Chand
and
S.
Bala
,
Appl. Surf. Sci.
252
,
358
(
2005
).
37.
J.
Osvald
,
Solid State Commun.
138
,
39
(
2006
).
38.
Zs. J.
Horvath
,
L.
Dozsa
,
O. H.
Krafcsik
,
T.
Mohacsy
, and
Gy.
Vida
,
Appl. Surf. Sci.
234
,
67
(
2004
).
39.
Ş.
Altındal
,
H.
Kanbur
,
D. E.
Yıldız
, and
M.
Parlak
,
Appl. Surf. Sci.
253
,
5056
(
2007
).
40.
B.
Cvikl
,
D.
Korosak
, and
Zs.
Horvath
,
Vacuum
50
,
385
(
1998
).
41.
Y. P.
Song
,
R. L.
Van Meirhaeghe
,
W. H.
Laflere
, and
F.
Cardon
,
Solid-State Electron.
29
,
633
(
1986
).
42.
Zs. J.
Horvarth
,
Solid-State Electron.
39
,
176
(
1996
).
43.
J. P.
Sullivan
,
R. T.
Tung
,
M. R.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
(
1991
).
44.
R. F.
Schmitsdorf
,
T. U.
Kampen
, and
W.
Mönch
,
Surf. Sci.
324
,
249
(
1995
).
45.
R. T.
Tung
,
Appl. Phys. Lett.
58
,
2821
(
1991
);
R. T.
Tung
,
Phys. Rev. B
45
13509
(
1992
).
You do not currently have access to this content.