We describe in situ nanoscale etch-pit formation on GaSb (100) surfaces as a result of exposure to an As2 flux in molecular beam epitaxy. The pits form as a result of an Sb-displacement reaction that occurs between the GaSb substrate and the impinging As adatoms. The nanoscale surface features are highly crystallographic with a strong preference for {111} planes, similar to other etching techniques. Nanopit dimensions and density increase with As exposure time. For the 60 s exposure analyzed in this article, the pits vary in both size and shape with average dimensions 25nm wide and 50–80 nm long and 10–70 nm deep, with density of 1×109/cm2. Subsequent GaAs overgrowth proceeds by a coalescence mechanism leaving interfacial nanovoids and finally highly planar bulk layers.

1.
S. A.
Campbell
,
The Science and Engineering of Microelectronic Fabrication
(
Oxford University Press
,
Oxford
,
1996
).
2.
D- Y.
Xia
and
S. R. J.
Brueck
,
J. Vac. Sci. Technol. B
23
,
2694
(
2005
).
3.
M. H.
Baier
,
S.
Watanabe
,
E.
Pelucchi
, and
E.
Kapon
,
Appl. Phys. Lett.
84
,
1943
(
2004
).
4.
S.
Birudavolu
,
N.
Nuntawong
,
G.
Balakrishnan
,
Y. C.
Xin
,
S.
Huang
,
S. C.
Lee
,
S. R. J.
Brueck
,
C. P.
Hains
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
85
,
2337
(
2004
).
5.
K. R.
Lensing
,
C.
Miller
,
G.
Chudleigh
,
B.
Swain
,
M.
Laughery
, and
A.
Viswanathan
,
Proc. SPIE
5375
,
307
(
2004
).
6.
W.
Daschner
,
M.
Larsson
, and
S. H.
Lee
,
Appl. Opt.
34
,
2534
(
1995
).
7.
T. S.
Yeoh
,
R. B.
Swint
,
A.
Gaur
,
V. C.
Elarde
, and
J. J.
Coleman
,
IEEE J. Sel. Top. Quantum Electron.
8
,
833
(
2002
).
8.
D.
Chithrani
,
R. L.
Williams
,
J.
Lefebvre
,
P. J.
Poole
, and
G. C.
Aers
,
Appl. Phys. Lett.
84
,
978
(
2004
).
9.
Y.
Nakamura
,
N.
Ikeda
,
S.
Ohkouchi
,
Y.
Sugimoto
,
H.
Nakamura
, and
K.
Asakawa
,
Physica E (Amsterdam)
21
,
551
(
2004
).
10.
S.
Kohmoto
,
H.
Nakamura
,
T.
Ishikawa
, and
K.
Asakawa
,
Appl. Phys. Lett.
75
,
3488
(
1999
).
11.
S.
Nishikawa
,
S.
Kohmoto
,
H.
Nakamura
,
T.
Ishikawa
,
K.
Asakawa
, and
O.
Wada
,
Phys. Status Solidi B
224
,
521
(
2001
).
12.
S. R. J.
Brueck
,
Proc. IEEE
93
,
1704
(
2005
).
13.
A. A.
Ukhanov
,
A. S.
Bracker
,
G.
Boishin
, and
J. C.
Culbertson
,
J. Vac. Sci. Technol. B
24
,
1577
(
2006
).
14.
S.
Birudavolu
,
S. Q.
Luong
,
N.
Nuntawong
,
Y. C.
Xin
,
C. P.
Hains
, and
D. L.
Huffaker
,
J. Cryst. Growth
277
,
97
(
2005
).
15.
M.
Losurdo
,
P.
Capezzuto
,
G.
Bruno
,
A. S.
Brown
,
T.
Brown
, and
G.
May
,
J. Appl. Phys.
100
,
013531
(
2006
).
16.
Y.
Tarui
,
Y.
Komiya
, and
Y.
Harada
,
J. Electrochem. Soc.
118
,
118
(
1971
).
17.
D. E.
Ibbotson
,
D. L.
Flamm
, and
V. M.
Donnelly
,
J. Appl. Phys.
54
,
5974
(
1983
).
18.
P. D.
Brewer
,
D.
McClure
, and
R. M.
Osgood
,
Appl. Phys. Lett.
47
,
310
(
1985
).
19.
W.
Qian
,
M.
Skowronski
,
R.
Kaspi
,
M. D.
Graef
, and
V. P.
Dravid
,
Appl. Phys. Lett.
81
,
7268
(
1997
).
20.
Ch. L.
Lin
,
Y. K.
Su
,
T. S.
Se
, and
W. L.
Li
,
Jpn. J. Appl. Phys., Part 2
37
,
L1543
(
1998
).
You do not currently have access to this content.