The introduction of hydrogen chloride (HCl) in the deposition chamber during the growth of 4H-SiC epitaxial layers allows very high growth rates to be achieved. The properties of the epilayers and the growth rate depend on many parameters such as the growth temperature and the C/Si, Cl/Si, and SiH2 ratios. We have used optical and electrical measurements to investigate the effect of the Cl/Si and SiH2 ratio and growth temperature on the epitaxial growth process. The growth rate increases with increasing SiH2 ratio and higher growth rates are obtained when HCl is added to the gas flow. Optical microscopy shows an improvement of the surface morphology, and luminescence measurements reveal a decrease in the concentration of complex defects with increasing Cl/Si ratio in the range of 0.05–2.0 and with increasing growth temperature from 1550°C to 1650°C. The electrical measurements on the diodes realized on these epitaxial layers show a decrease of the leakage current with increasing Cl/Si ratio and growth temperature over the same range. Deep level transient spectroscopy measurements indicate that the deep level EH67, which is one of the main levels responsible for the high value of leakage current measured in the Schottky diodes, is greatly reduced using HCl as a growth additive.

1.
A.
Elasser
and
T. P.
Chow
,
Proc. IEEE
90
,
969
(
2002
).
2.
J. R.
Waldrop
,
R. W.
Grant
,
Y. C.
Wang
, and
R. F.
Davies
,
J. Appl. Phys.
72
,
4757
(
1992
).
3.
J. H.
Zhao
,
P.
Alexandrov
, and
X.
Li
,
IEEE Electron Device Lett.
24
,
402
(
2003
).
4.
A.
Veneroni
,
F.
Omarini
,
M.
Masi
,
S.
Leone
,
M.
Mauceri
,
G.
Pistone
, and
G.
Abbondanza
,
Mater. Sci. Forum
483
,
57
(
2005
).
5.
R.
Rupp
,
A.
Wiedenhofer
,
P.
Friedrichs
,
D.
Peters
,
R.
Schorner
, and
D.
Stephani
,
Mater. Sci. Forum
264
,
89
(
1998
).
6.
D.
Crippa
,
G. L.
Valente
,
A.
Ruggiero
,
L.
Neri
,
R.
Reitano
,
L.
Calcagno
,
G.
Foti
,
M.
Mauceri
,
S.
Leone
,
G.
Pistone
,
G.
Abbondanza
,
G.
Abbagnale
,
A.
Veneroni
,
F.
Omarini
,
L.
Zamolo
,
M.
Masi
,
F.
Roccaforte
,
F.
Giannazzo
,
S.
Di Franco
, and
F.
La Via
,
Mater. Sci. Forum
483
,
67
(
2005
).
7.
R. L.
Myers
,
O.
Kordina
,
S.
Rao
,
R.
Everly
, and
S. E.
Saddow
,
Mater. Sci. Forum
483
,
73
(
2005
).
8.
F.
Roccaforte
,
S.
Libertino
,
V.
Raineri
,
A.
Ruggiero
,
V.
Massimino
, and
L.
Calcagno
,
J. Appl. Phys.
99
,
013515
(
2006
).
9.
H.
Fujiwara
,
T. K.
Kimoto
,
T.
Tojo
, and
H.
Matsunami
,
Mater. Sci. Forum
483
,
151
(
2005
).
10.
J.
Zhang
,
L.
Storasta
,
J. P.
Bergman
,
N. T.
Son
, and
E.
Jansen
,
J. Appl. Phys.
93
,
4708
(
2003
).
11.
C. W.
Litton
,
D.
Johnstone
,
A.
Akarca-Biyikli
,
K. S.
Ramaiah
,
I.
Bhat
,
T. P.
Chow
,
J. K.
Kim
, and
E. F.
Schubert
,
Appl. Phys. Lett.
88
,
121914
(
2006
).
12.
A.
Veneroni
and
M.
Masi
,
Chem. Vap. Deposition
12
,
562
(
2006
).
13.
J.
Zhang
,
L.
Storasta
,
J.
Bergman
,
N. T.
Son
, and
E.
Jansen
,
J. Appl. Phys.
93
,
4708
(
2003
).
14.
K.
Danno
,
T.
Kimoto
, and
H.
Matsunami
,
Appl. Phys. Lett.
86
,
122104
(
2005
).
15.
A.
Pimpinelli
and
I.
Villain
,
Physics of Crystal Growth
(
Cambridge University Press
,
Cambridge
,
1998
).
16.
L.
Storasta
,
J. P.
Bergman
,
E.
Janzén
,
A.
Henry
, and
J.
Lu
,
J. Appl. Phys.
96
,
4909
(
2004
).
17.
F.
La Via
,
G.
Galvagno
,
F.
Roccaforte
,
A.
Ruggiero
, and
L.
Calcagno
,
Appl. Phys. Lett.
87
,
142105
(
2005
).
You do not currently have access to this content.