Bond rearrangements, facilitated by H insertion into strained Si–Si bonds have been shown to result in H-induced crystallization of amorphous silicon films. Whether such H-induced rearrangements can lead to synthesis of nanocrystalline films at room temperature has remained an open question. In this article, the authors demonstrate the deposition of thin films containing nanocrystals of silicon using inductively coupled SiH4/H2 plasma at room temperature. Real time in situ spectroscopic ellipsometry and ex situ transmission electron microscopy revealed that the silicon nanocrystals nucleate below the surface, and grow beneath an amorphous silicon crust. This observation validates the hydrogen-induced crystallization model. Analysis of the crystal size distribution shows that the distribution depends on the growth duration rather than the substrate temperature. Observation of crystals as large as 100–150 nm at room temperature indicates that silicon nanocrystals not only nucleate but also grow substantially in the bulk even at room temperature.

1.
P. R. I.
Cabarrocas
,
A. F. I.
Morral
,
S.
Lebib
, and
Y.
Poissant
,
Pure Appl. Chem.
74
,
359
(
2002
).
2.
Y.
Ishikawa
and
M. B.
Schubert
,
Jpn. J. Appl. Phys., Part 1
45
,
6812
(
2006
).
3.
A.
Shah
,
P.
Torres
,
R.
Tscharner
,
N.
Wyrsch
, and
H.
Keppner
,
Science
285
,
692
(
1999
).
4.
S.
Tiwari
,
F.
Rana
,
H.
Hanafi
,
A.
Hartstein
,
E. F.
Crabbe
, and
K.
Chan
,
Appl. Phys. Lett.
68
,
1377
(
1996
).
5.
L.
Tsybeskov
,
MRS Bull.
23
,
33
(
1998
).
6.
S.
Wagner
,
H.
Gleskova
,
I. C.
Cheng
, and
M.
Wu
,
Thin Solid Films
430
,
15
(
2003
).
7.
J. R.
Abelson
,
Appl. Phys. A: Mater. Sci. Process.
56
,
493
(
1993
).
8.
S.
Veprek
,
Z.
Iqbal
,
H. R.
Oswald
,
F. A.
Sarott
, and
J. J.
Wagner
,
J. Phys. (Paris)
42
,
251
(
1981
).
9.
P.
Roca i Cabarrocas
,
J. Non-Cryst. Solids
266-269
,
31
(
2000
).
10.
M.
Kondo
,
M.
Fukawa
,
L. H.
Guo
, and
A.
Matsuda
,
J. Non-Cryst. Solids
266-269
,
84
(
2000
).
11.
A.
Abramov
,
Y.
Djeridane
,
R.
Vanderhaghen
, and
P.
Roca i Cabarrocas
,
J. Non-Cryst. Solids
352
,
964
(
2006
).
12.
P.
Alpuim
,
V.
Chu
, and
J. P.
Conde
,
J. Appl. Phys.
86
,
3812
(
1999
).
13.
P.
Alpuim
,
V.
Chu
, and
J. P.
Conde
,
J. Vac. Sci. Technol. A
19
,
2328
(
2001
).
14.
J. P.
Conde
,
P.
Alpuim
,
M.
Boucinha
,
J.
Gaspar
, and
V.
Chu
,
Thin Solid Films
395
,
105
(
2001
).
15.
E.
Edelberg
,
S.
Bergh
,
R.
Naone
,
M.
Hall
, and
E. S.
Aydil
,
J. Appl. Phys.
81
,
2410
(
1997
).
16.
P.
Roca i Cabarrocas
,
Curr. Opin. Solid State Mater. Sci.
6
,
439
(
2002
).
17.
D.
Kwon
,
C. C.
Chen
,
J. D.
Cohen
,
H. C.
Jin
,
E.
Hollar
,
I.
Robertson
, and
J. R.
Abelson
,
Phys. Rev. B
60
,
4442
(
1999
).
18.
D.
Kwon
,
H.
Lee
,
J. D.
Cohen
,
H. C.
Jin
, and
J. R.
Abelson
,
J. Non-Cryst. Solids
227-230
,
1040
(
1998
).
19.
A.
Fontcuberta i Morral
,
J.
Bertomeu
, and
P.
Roca i Cabarrocas
,
Mater. Sci. Eng., B
69-70
,
559
(
2000
).
20.
A.
Fontcuberta i Morral
and
P.
Roca i Cabarrocas
,
Thin Solid Films
383
,
161
(
2001
).
21.
M.
Otobe
and
S.
Oda
,
Jpn. J. Appl. Phys., Part 2
31
,
L1443
(
1992
).
22.
H.
Shirai
and
T.
Arai
,
J. Non-Cryst. Solids
198-200
,
931
(
1996
).
23.
H.
Shirai
,
J.
Hanna
, and
I.
Shimizu
,
Jpn. J. Appl. Phys., Part 2
30
,
L679
(
1991
).
24.
S.
Sriraman
,
S.
Agarwal
,
E. S.
Aydil
, and
D.
Maroudas
,
Nature
418
,
62
(
2002
).
25.
M.
Fang
and
B.
Drevillon
,
J. Appl. Phys.
71
,
5445
(
1992
).
26.
J.
Jang
,
S. O.
Koh
,
T. G.
Kim
, and
S. C.
Kim
,
Appl. Phys. Lett.
60
,
2874
(
1992
).
27.
N.
Layadi
,
P. R. I.
Cabarrocas
,
B.
Drevillon
, and
I.
Solomon
,
Phys. Rev. B
52
,
5136
(
1995
).
28.
S.
Veprek
,
J. Chem. Phys.
57
,
952
(
1972
).
29.
A.
Matsuda
,
J. Non-Cryst. Solids
59–60
,
767
(
1983
).
30.
K.
Nomoto
,
Y.
Urano
,
J. L.
Guizot
,
G.
Ganguly
, and
A.
Matsuda
,
Jpn. J. Appl. Phys., Part 2
29
,
L1372
(
1990
).
31.
M.
Katiyar
and
J. R.
Abelson
,
Mater. Sci. Eng., A
304-306
,
349
(
2001
).
32.
C. C.
Tsai
,
G. B.
Anderson
,
R.
Thompson
, and
B.
Wacker
,
J. Non-Cryst. Solids
114
,
151
(
1989
).
33.
J. J.
Boland
and
G. N.
Parsons
,
Science
256
,
1304
(
1992
).
34.
K.
Nakamura
,
K.
Yoshida
,
S.
Takeoka
, and
I.
Shimizu
,
Jpn. J. Appl. Phys., Part 1
34
,
442
(
1995
).
35.
S.
Sriraman
,
M. S.
Valipa
,
E. S.
Aydil
, and
D.
Maroudas
,
J. Appl. Phys.
100
,
053514
(
2006
).
36.
M. S.
Valipa
,
S.
Sriraman
,
E. S.
Aydil
, and
D.
Maroudas
,
J. Appl. Phys.
100
,
053515
(
2006
).
37.
L. T.
Sun
,
J. L.
Gong
,
D. Z.
Zhu
,
Z. Y.
Zhu
, and
S. X.
He
,
Adv. Mater.
16
,
1849
(
2004
).
38.
L. T.
Sun
,
J. L.
Gong
,
Z. Y.
Zhu
,
D. Z.
Zhu
,
S. X.
He
, and
Z. X.
Wang
,
Acta Phys. Sin.
53
,
3467
(
2004
).
39.
J. H.
Wu
,
J. M.
Shieh
,
B. T.
Dai
, and
Y. C. S.
Wu
,
Electrochem. Solid-State Lett.
7
,
G128
(
2004
).
40.
D. C.
Marra
,
E. A.
Edelberg
,
R. L.
Naone
, and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
16
,
3199
(
1998
).
41.
S.
Agarwal
,
S.
Sriraman
,
A.
Takano
,
M. C. M.
van de Sanden
,
E. S.
Aydil
, and
D.
Maroudas
,
Surf. Sci.
515
,
L469
(
2002
).
42.
S.
Agarwal
,
A.
Takano
,
M. C. M.
van de Sanden
,
D.
Maroudas
, and
E. S.
Aydil
,
J. Chem. Phys.
117
,
10805
(
2002
).
43.
S.
Agarwal
,
M. S.
Valipa
,
B.
Hoex
,
M. C. M.
van de Sanden
,
D.
Maroudas
, and
E. S.
Aydil
,
Surf. Sci.
598
,
35
(
2005
).
44.
D. E.
Aspnes
,
Thin Solid Films
89
,
249
(
1982
).
45.
Y. J.
Chabal
,
Surf. Sci. Rep.
8
,
211
(
1988
).
46.
Y. J.
Chabal
,
M. A.
Hines
, and
D.
Feijoo
,
J. Vac. Sci. Technol. A
13
,
1719
(
1995
).
47.
Y. J.
Chabal
and
K.
Raghavachari
,
Phys. Rev. Lett.
53
,
282
(
1984
).
48.
K. J.
Uram
and
U.
Jansson
,
J. Vac. Sci. Technol. B
7
,
1176
(
1989
).
49.
K. J.
Uram
and
U.
Jansson
,
Surf. Sci.
249
,
105
(
1991
).
50.
D. C.
Marra
,
W. M. M.
Kessels
,
M. C. M.
van de Sanden
,
K.
Kashefizadeh
, and
E. S.
Aydil
,
Surf. Sci.
530
,
1
(
2003
).
51.
A. E.
Robertson
,
L. G.
Hultman
,
H. T. G.
Hentzell
,
S. E.
Hornstrom
,
G.
Shaofang
, and
P. A.
Psaras
,
J. Vac. Sci. Technol. A
5
,
1447
(
1987
).
You do not currently have access to this content.