The atomic nature of the interface in (100)SiLaAlO3 structures with nanometer-thin amorphous LaAlO3 layers of high dielectric constant (κ), deposited directly on clean (100)Si by molecular beam deposition at 100°C, was assessed through probing of paramagnetic point defects. On the as-grown samples K-band electron spin resonance indicated the absence of a SiSiO2-type interface in terms of the archetypal Si-dangling bond-type SiSiO2 interface defects (Pb0, Pb1). With no Pb-type defects observed, this state is found to persist during subsequent annealing (1atmN2 or 5% O2 in N2 ambient) up to the temperature Tan800°C, referring to a thermally stable abrupt SiLaAlO3 interface, quite in contrast with other high-κ metal oxide∕Si structures. However, in the range Tan800860°C a SiSiO2-type interface starts forming as evidenced by the appearance of Pb0 defects and, with some delay in Tan, the EX center—a SiO2 associated defect, attesting to significant structural∕compositional modification. The peaking of the defect density versus Tan curves indicates the SiOx nature of the interlayer to break up again upon annealing at Tan930°C, possibly related to crystallization and∕or degrading silicate formation. No specific LaAlO3-specific point defects could be traced.

1.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
2.
M.
Houssa
 et al.,
Mater. Sci. Eng., R.
51
,
37
(
2006
).
3.
See the
International Technology Roadmap for Semiconductors
, 2005 ed. (
Semiconductor Industry Association
,
San Jose, CA
,
2005
).
4.
M. A.
Quevedo-Lopez
,
M.
El-Bouanani
,
B. E.
Gnade
,
R. M.
Wallace
,
M. R.
Visokay
,
M.
Douglas
,
M. J.
Bevan
, and
L.
Colombo
,
J. Appl. Phys.
92
,
3540
(
2002
).
5.
J.
Robertson
,
Eur. Phys. J.: Appl. Phys.
28
,
265
(
2004
).
6.
See, e.g.,
W.
Vandervorst
 et al.,
Mater. Res. Soc. Symp. Proc.
745
,
23
(
2003
).
7.
G. A.
Botton
,
E.
Romain
,
D.
Landheer
,
X.
Wu
,
M.-Y.
Wu
,
M.
Lee
, and
Z.-H.
Lu
,
Proc.-Electrochem. Soc.
2003–02
,
251
(
2003
).
8.
L. F.
Edge
 et al.,
Appl. Phys. Lett.
84
,
4629
(
2004
).
9.
L. F.
Edge
 et al.,
Appl. Phys. Lett.
89
,
062902
(
2006
).
10.
P.
Sivasubramani
,
M. J.
Kim
,
B. E.
Gnade
,
R. M.
Wallace
,
L. F.
Edge
,
D. L.
Schlom
,
H. S.
Craft
, and
J. P.
Maria
,
Appl. Phys. Lett.
86
,
201901
(
2005
).
11.
B. H.
Lee
,
L.
Kang
,
R.
Nieh
,
W. J.
Qi
, and
J. C.
Lee
,
Appl. Phys. Lett.
76
,
1926
(
2000
).
12.
M.
Copel
,
M.
Gribelyuk
, and
E.
Gusev
,
Appl. Phys. Lett.
76
,
436
(
2000
);
C. M.
Perkins
,
B. B.
Triplett
,
P. C.
McIntyre
,
K. C.
Saraswat
,
S.
Haukka
, and
M.
Tuominen
,
Appl. Phys. Lett.
78
,
2357
(
2001
);
M.
Gutowski
,
J. E.
Jaffe
,
C.-L.
Liu
,
M.
Stoker
,
R. I.
Hedge
,
R. S.
Rai
, and
P. J.
Tobin
,
Appl. Phys. Lett.
80
,
1897
(
2002
).
13.
M.
Cho
,
J.
Park
,
H. B.
Park
,
C. S.
Hwang
,
J.
Jeong
, and
K. S.
Hyun
,
Appl. Phys. Lett.
81
,
334
(
2002
);
M. R.
Visokay
,
J. J.
Chambers
,
A. L.
Rotondaro
,
A.
Shanware
, and
L.
Colombo
,
Appl. Phys. Lett.
80
,
3183
(
2002
).
14.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Phys.: Condens. Matter
13
,
L673
(
2001
);
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Phys. Lett.
80
,
1957
(
2002
).
15.
A. Y.
Kang
,
P. M.
Lenahan
,
J. F.
Conley
, Jr.
, and
R.
Solanski
,
Appl. Phys. Lett.
81
,
1128
(
2002
).
16.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
97
,
033510
(
2004
).
17.
J. L.
Cantin
and
H. J.
von Bardeleben
,
J. Non-Cryst. Solids
303
,
175
(
2002
).
18.
S.
Baldovino
,
S.
Nokrin
,
G.
Scarel
,
M.
Fanciulli
,
T.
Graf
, and
M. S.
Brandt
,
J. Non-Cryst. Solids
322
,
168
(
2003
).
19.
B. J.
Jones
and
R. C.
Barklie
,
Microelectron. Eng.
80
,
74
(
2005
).
20.
M.
Houssa
,
A.
Stesmans
,
M.
Naili
, and
M. M.
Heyns
,
Appl. Phys. Lett.
77
,
1381
(
2000
).
21.
J. R.
Chavez
,
R. A. B.
Devine
, and
L.
Koltunski
,
J. Appl. Phys.
90
,
4284
(
2001
).
22.
V. V.
Afanas’ev
and
A.
Stesmans
,
Appl. Phys. Lett.
80
,
1261
(
2002
).
23.
R. J.
Carter
 et al.,
International Workshop on Gate Insulators
, edited by
S.
Ohmi
,
F.
Fujita
, and
H. S.
Momose
(
Japan Society of Applied Physics
,
Tokyo
,
2001
), p.
94
.
24.
X.
Garros
,
G.
Reimbold
,
D.
Duret
,
C.
Leroux
,
B.
Guillaumot
,
O.
Louveau
,
C.
Hobbs
, and
F.
Martin
,
Proceedings 43rd Annual IEEE International Reliability Physics Symposium
,
2005
(unpublished).
25.
P.
Masson
,
J. L.
Autran
,
M.
Houssa
,
X.
Garros
, and
C.
Leroux
,
Appl. Phys. Lett.
81
,
3392
(
2002
).
26.
B. J.
O’Sullivan
 et al.,
J. Electrochem. Soc.
151
,
493
(
2004
).
27.
R. J.
Carter
,
E.
Cartier
,
A.
Kerber
,
L.
Pantisano
,
T.
Schram
,
S.
De Gendt
, and
M.
Heyns
,
Appl. Phys. Lett.
83
,
533
(
2003
).
28.
M.
Schmidt
,
M. C.
Lemme
,
H.
Kurz
,
T.
Witters
,
T.
Schram
,
K.
Cherkaoui
,
A.
Negara
, and
P. K.
Hurley
,
Microelectron. Eng.
80
,
70
(
2005
).
29.
M.
Copel
and
M. C.
Reuter
,
Appl. Phys. Lett.
83
,
3398
(
2003
).
30.
A.
Stesmans
and
V. V.
Afanas’ev
,
Phys. Rev. B
57
,
10030
(
1998
).
31.
R.
Helms
and
E. H.
Poindexter
,
Rep. Prog. Phys.
57
,
791
(
1994
).
K.
Brower
,
Appl. Phys. Lett.
43
,
1111
(
1983
).
33.
A.
Stesmans
,
Phys. Rev. B
48
,
2418
(
1993
).
34.
A.
Stesmans
,
B.
Nouwen
, and
V. V.
Afanas’ev
,
Phys. Rev. B
58
,
15801
(
1998
).
35.
E. H.
Poindexter
and
P. J.
Caplan
, in
Insulating Films on Semiconductors
, edited by
M.
Schultz
and
G.
Pensl
(
Springer
,
Berlin
,
1981
), p.
150
.
36.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
83
,
2449
(
1998
).
37.
W.
Futako
,
M.
Mizuochi
, and
S.
Yamasaki
,
Phys. Rev. Lett.
92
,
105505
(
2004
).
38.
A.
Stesmans
,
Phys. Rev. B
45,
9502
(
1992
).
39.
A.
Stesmans
and
F.
Scheerlinck
,
J. Appl. Phys.
75
,
1047
(
1994
).
40.
A.
Stesmans
and
F.
Scheerlinck
,
Phys. Rev. B
50
,
5204
(
1994
).
41.
W. E.
Carlos
and
S. M.
Prokes
,
J. Appl. Phys.
78
,
2129
(
1995
).
42.
H. J.
von Bardeleben
,
C.
Ortega
,
A.
Grosman
,
V.
Morazzani
,
J.
Siejka
, and
D.
Stievenard
,
J. Lumin.
57
,
301
(
1993
).
43.
A.
Stesmans
,
B.
Nouwen
, and
V. V.
Afanas’ev
,
Phys. Rev. B
66
,
045307
(
2002
).
44.
A.
Baumer
,
M.
Stutzmann
,
M. S.
Brandt
,
F. C. K.
Au
, and
T. S.
Lee
,
Appl. Phys. Lett.
85
,
943
(
2004
).
45.
R. P.
Wang
,
Appl. Phys. Lett.
88
,
142104
(
2006
).
46.
M.
Dohi
,
H.
Yamatani
, and
T.
Fujita
,
J. Appl. Phys.
91
,
815
(
2002
).
47.
A.
Stesmans
,
K.
Clémer
, and
V. V.
Afanas’ev
,
Phys. Rev. B
72
,
155335
(
2005
).
48.
H. J.
von Bardeleben
,
J. L.
Cantin
,
J. J.
Ganem
, and
I.
Trimaille
, in Defects in High-κ Gate Dielectric Stacks,
NATO Science Series
, edited by
E.
Gusev
(
Kluwer
,
Dordrecht
,
2006
), p.
263
.
49.
B. B.
Triplett
,
P. T.
Chen
,
Y.
Nishi
,
P. H.
Kasai
,
J. J.
Chambers
, and
L.
Colombo
,
J. Appl. Phys.
101
,
013703
(
2007
).
50.
H.
Kusumoto
and
M.
Shoji
,
J. Phys. Soc. Jpn.
17
,
1678
(
1962
).
51.
B. E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
79
,
806
(
2001
).
52.
B. E.
Park
and
H.
Ishiwara
,
Appl. Phys. Lett.
82
,
1197
(
2003
).
53.
L. F.
Edge
,
D. G.
Schlom
,
S. A.
Chambers
,
E.
Cicerrella
,
J. L.
Freeouf
,
B.
Holländer
, and
J.
Schubert
,
Appl. Phys. Lett.
84
,
726
(
2004
).
54.
X. B.
Lu
 et al.,
Appl. Phys. Lett.
84
,
2620
(
2004
).
55.
Q. Y.
Shao
,
Appl. Phys. A: Mater. Sci. Process.
81
,
1181
(
2005
).
56.
J.
Lettieri
,
J. H.
Haeni
, and
D. G.
Schlom
,
J. Vac. Sci. Technol. A
20
,
1332
(
2002
).
57.
J. I.
Pankove
,
D. E.
Carlson
,
J. E.
Berkeyheiser
, and
R. O.
Wance
,
Phys. Rev. Lett.
51
,
2224
(
1983
).
58.
D. L.
Griscom
,
J. Appl. Phys.
58
,
2524
(
1985
), and references therein.
59.
A. H.
Edwards
,
J. Non-Cryst. Solids
187
,
232
(
1995
).
60.
A.
Pusel
,
U.
Wetterauer
, and
P.
Hess
,
Phys. Rev. Lett.
81
,
645
(
1998
).
61.
T.
Vondrak
and
X. Y.
Zhu
,
J. Phys. Chem. B
103
,
4892
(
1999
).
62.
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Phys. Lett.
82
,
2835
(
2003
).
63.
W.
Futako
,
T.
Umeda
,
M.
Nishizawa
,
T.
Yasuda
,
J.
Isoya
, and
S.
Yamasaki
,
J. Non-Cryst. Solids
299–302
,
575
(
2002
);
W.
Futako
,
T.
Umeda
,
M.
Nishizawa
,
T.
Yasuda
,
J.
Isoya
, and
S.
Yamasaki
,
Phys. Rev. Lett.
92
,
105505
(
2004
).
[PubMed]
64.
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Phys. Lett.
77
,
1469
(
2000
).
You do not currently have access to this content.