A numerical investigation study was performed to study the phase change behavior of wax/foam composite encapsulated in an aluminum casing. Two types of foam materials, namely, aluminum and carbon, were infiltrated with paraffin wax. The progress of melt interface and temperature distribution within the encapsulated composite was analyzed using computational fluid dynamics software (CFD). A two-energy equation model was implemented in the CFD software through the use of user defined function (UDF). Interfacial effects influencing the heat transfer process at the casing-composite junction and between the wax-foam surfaces within the composite were addressed through the use of separate UDF. In addition, the effect of capillary pressure developed within the foam matrix was incorporated using an area ratio parameter. The contact resistance at the foam-casing interface and the capillary pressure had a major influence on the thermal behavior of the system. These two factors lowered down the heat transfer rate considerably and the melting area was reduced by more than 30%. The temperature profiles for the foam material showed a different pattern as compared to the temperature within the wax, which was due to the effect of thermal nonequilibrium.

1.
S. A.
Khateeb
,
M. M.
Farid
,
J. R.
Selman
, and
S.
Al-Hallaj
,
J. Power Sources
128
,
292
(
2004
).
2.
S. A.
Khateeb
,
S.
Amiruddin
,
M.
Farid
,
J. R.
Selman
, and
S.
Al-Hallaj
,
J. Power Sources
142
,
345
(
2005
).
3.
X.
Py
,
R.
Olives
, and
S.
Mauran
,
Int. J. Heat Mass Transfer
44
,
2727
(
2001
).
4.
A.
Mills
,
M.
Farid
,
J. R.
Selman
, and
S.
Al-Hallaj
,
Appl. Therm. Eng.
26
,
128
(
2006
).
5.
Z.
Zhang
and
X.
Fang
,
Energy Convers. Manage.
47
,
303
(
2006
).
6.
A.
Sari
,
Energy Convers. Manage.
45
,
2033
(
2004
).
7.
S.
Mauran
,
P.
Prades
, and
F.
L’haridon
,
Heat Recovery Syst. CHP
13
(
4
),
315
(
1993
).
8.
S. T.
Hong
and
D. R.
Herling
,
Scr. Mater.
55
,
887
(
2006
).
9.
J. A.
Weaver
and
R.
Viskanta
,
Int. Commun. Heat Mass Transfer
13
(
3
),
245
(
1986
).
10.
C.
Beckermann
and
R.
Viskanta
,
Int. J. Heat Mass Transfer
31
,
35
(
1988
).
11.
O.
Mesalhy
,
K.
Lafdi
, and
A.
Elgafy
,
Carbon
44
,
2080
(
2006
).
12.
K.
Vafai
and
M.
Sozen
,
ASME J. Heat Transfer
112
,
690
(
1990
).
13.
K.
Vafai
and
M.
Sozen
,
ASME J. Heat Transfer
112
,
1014
(
1990
).
14.
V. V.
Calmidi
and
R. L.
Mahajan
,
ASME J. Heat Transfer
121
,
466
(
1999
).
15.
M.
Phanikumar
and
R.
Mahajan
,
Int. J. Heat Mass Transfer
45
,
3781
(
2002
).
16.
M.
Quintard
and
S.
Whitaker
,
Adv. Heat Transfer
23
,
369
(
2003
).
17.
O.
Mesalhy
,
K.
Lafdi
, and
A.
Elgafy
,
Energy Convers. Manage.
46
,
847
(
2005
).
18.
K.
Lafdi
,
O.
Mesalhy
,
K.
Lafdi
, and
S.
Shaikh
,
Appl. Phys. A: Mater. Sci. Process.
(
submitted
).
19.
K.
Lafdi
,
O.
Mesalhy
, and
S.
Shaikh
,
Energy Convers. Manage.
(
submitted
).
20.
K.
Lafdi
,
O.
Mesalhy
, and
S.
Shaikh
,
Energy Convers. Manage.
(
submitted
).
21.
I.
Savija
,
J. R.
Culham
,
M. M.
Yovanovich
, and
E. E.
Marotta
,
40th AIAA Aerospace Sciences Meeting and Exhibit
(AIAA-2002-0494), Vol.
17
, (
Reno, NV
,
2002
), pp. 43–52.
22.
S.
Shaikh
and
K.
Lafdi
,
Carbon
45
,
695
(
2007
).
23.
K.
Lafdi
,
O.
Mesalhy
, and
S.
Shaikh
,
Carbon
(
in press
).
You do not currently have access to this content.