Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. In addition to being an electron source, the triple point is generally regarded as the location where flashover is initiated in high voltage insulation, and as the vulnerable spot from which rf breakdown is triggered. In this paper, we focus on the electric field distribution at a triple point of a general geometry, as well as the electron orbits in its immediate vicinity. We calculate the orbit of the first generation electrons, the seed electrons. It is found that, despite the mathematically divergent electric field at the triple point, significant electron yield most likely results from secondary electron emission when the seed electrons strike the dielectric. The analysis gives the voltage scale in which this electron multiplication may occur. It also provides an explanation on why certain dielectric angles are more favorable to electron generation over others, as observed in previous experiments.

1.
H. C.
Miller
, in
High Voltage Vacuum Insulation
, edited by
R. V.
Latham
(
Academic
,
London
,
1995
), Chap. 8, p.
299
.
2.
G. A.
Mesyats
and
D. I.
Proskuvosky
,
Pulsed Electrical Discharge in Vacuum
(
Spinger-Verlag
,
Berlin
,
1989
).
3.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
IEEE
,
New York
,
2001
).
4.
R. J.
Umstattd
,
D.
Abe
,
J.
Benford
,
D.
Gallaghar
,
R. M.
Gilgenbach
,
D. M.
Goebel
,
M. S.
Litz
, and
J. A.
Nation
,
High-Power Microwave Sources and Technologies
(Ref. 3), Chap. 9, p.
284
;
R. J.
Umstattd
, in
Modern Microwave and Millimeter Wave Power Electronics
, edited by
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, and
G. S.
Nusinovich
(
IEEE
,
Piscataway, NJ
,
2005
), Chap. 8, p.
393
.
5.
D.
Shiffler
,
T. K.
Statum
,
T. W.
Hussey
,
O.
Zhou
, and
P.
Mardahl
, in
Modern Microwave and Millimeter Wave Power Electronics
, edited by
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, and
G. S.
Nusinovich
(
IEEE
,
Piscataway, NJ
,
2005
), Chap. 13, p.
691
.
6.
M. C.
Jones
, Ph.D. dissertation,
University of Michigan
,
2005
.
7.
A. A.
Neuber
,
L.
Laurent
,
Y. Y.
Lau
, and
H.
Krompholz
,
High-Power Microwave Sources and Technologies
(Ref. 3), Chap. 10, p.
325
.
8.
G.
Edmiston
,
J.
Krile
,
A.
Neuber
,
J.
Dickens
, and
H.
Krompholz
,
IEEE Trans. Plasma Sci.
34
,
1782
(
2006
).
9.
H. C.
Kim
,
J. P.
Verboncoeur
,
Y.
Chen
, and
Y. Y.
Lau
,
Proceedings of the Seventh IEEE International Vacuum Electronics Conference, Monterey, CA
(
IEEE
,
Piscataway, NJ
,
2006
), p.
359
;
Y. Y.
Lau
,
J. P.
Verboncoeur
, and
H. C.
Kim
,
Appl. Phys. Lett.
89
,
261501
(
2006
).
10.
K. D.
Bergeron
,
J. Appl. Phys.
48
,
3073
(
1977
).
11.
R. A.
Anderson
and
J. P.
Brainard
,
J. Appl. Phys.
51
,
1414
(
1980
).
12.
L.
Schachter
,
Appl. Phys. Lett.
72
,
421
(
1998
).
13.
A. S.
Gilmour
,
Microwave Tubes
(
Artech House
,
Norwood, MA
,
1986
).
14.
M. E.
Cuneo
,
IEEE Trans. Dielectr. Electr. Insul.
6
,
469
(
1999
).
15.
J. R. M.
Vaughan
,
IEEE Trans. Electron Devices
40
,
830
(
1993
).
16.
O.
Hachenberg
and
W.
Brauer
, in
Secondary Electron Emission from Solids
,
Advances in Electronics and Electron Physics Vol. XI
, edited by
L.
Marton
(
Academic
,
New York
,
1959
), pp.
413
499
.
17.
J. W.
Luginsland
,
Y. Y.
Lau
,
R. J.
Umstattd
, and
J. J.
Watrous
,
Phys. Plasmas
9
,
2371
(
2002
).
18.
W. A.
Anderson
,
J. Vac. Sci. Technol. B
11
,
383
(
1993
);
Y. Y.
Lau
,
Y.
Liu
, and
R. K.
Parker
,
Phys. Plasmas
1
,
2082
(
1994
).
19.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
20.
O. W.
Richardson
,
Philos. Mag.
28
,
633
(
1914
);
21.
J. J.
Petillo
,
E. M.
Nelson
,
J. F.
DeFord
,
N. J.
Dionne
, and
B.
Levush
,
IEEE Trans. Electron Devices
52
,
742
(
2005
).
22.
N. M.
Jordan
,
R. M.
Gilgenbach
,
Y. Y.
Lau
,
B. W.
Hoff
,
E. J.
Cruz
,
D. M.
French
,
M. R.
Gomez
,
P.
Pengvanich
,
J.
Zier
, and
M. C.
Jones
,
Proceedings of the thirty-fourth IEEE International Conference on Plasma Science
, Albuquerque, NM (
IEEE
,
Piscataway, NJ
,
2007
), p.
380
.
23.
M. C.
Jones
,
V. B.
Neculaes
,
R. M.
Gilgenbach
,
W. M.
White
,
M. R.
Lopez
,
Y. Y.
Lau
,
T. A.
Spencer
, and
D.
Price
,
Rev. Sci. Instrum.
75
,
2976
(
2004
).
24.
J. H.
Booske
,
X.
He
,
R. L.
Miller
,
D. M.
Morgan
,
J. E.
Scharer
,
V.
Vlahos
,
R. M.
Gilgenbach
,
N. M.
Jordan
,
Y. Y.
Lau
,
Y.
Feng
, and
J. B.
Verboncoeur
,
Proceedings of the thirty-fourth IEEE International Conference on Plasma Science
, Albuquerque, NM (
IEEE
,
Piscataway, NJ
,
2007
), p.
350
.
25.
C. H.
De Tourreil
and
K. D.
Srivastava
,
IEEE Trans. Electr. Insul.
EI-8
,
17
(
1973
).
26.
M. S.
Chung
,
B. G.
Yoon
,
P. H.
Cutler
, and
N. M.
Miskovsky
,
J. Vac. Sci. Technol. B
22
,
1240
(
2004
).
27.
Ansoft Corporation
, http://www.ansoft.com
28.
R. A.
Kishek
and
Y. Y.
Lau
,
Phys. Rev. Lett.
80
,
103
(
1998
).
29.
L. K.
Ang
,
Y. Y.
Lau
,
R. A.
Kishek
, and
R. M.
Gilgenbach
,
IEEE Trans. Plasma Sci.
26
,
290
(
1998
).
30.
R. E.
Turner
,
Vacuum Microelectronics
(
IOP
,
Bristol
,
1989
).
31.
R. M.
Gilgenbach
,
Y. Y.
Lau
,
H.
McDowell
,
K. L.
Cartwright
, and
T. A.
Spencer
, in
Modern Microwave and Millimeter Wave Power Electronics
, edited by
R. J.
Barker
,
J. H.
Booske
,
N. C.
Luhmann
, and
G. S.
Nusinovich
(
IEEE
,
Piscataway, NJ
,
2005
), Chap. 6, p.
289
.
You do not currently have access to this content.