A wave propagation model in macroscopically inhomogeneous porous media is derived from the alternative Biot’s theory of 1962. As a first application, the wave equation is reduced and solved in the case of rigid frame inhomogeneous porous materials. The pressure field, as well as the reflection and transmission coefficients, are obtained numerically using a wave splitting and “transmission” Green’s functions approach (WS-TGF). To validate both the wave equation and the method of resolution at normal and oblique incidence, results obtained by the WS-TGF method are compared to those calculated by the classical transfer matrix method and to experimental measurements for a known two-layered porous material, considered as a single inhomogeneous layer. Discussions are then given of the reflection and transmission coefficients for various inhomogeneity profiles as well as of the internal pressure field.

1.
M. A.
Biot
,
J. Acoust. Soc. Am.
28
,
168
(
1956
);
M. A.
Biot
,
J. Acoust. Soc. Am.
28
,
179
(
1956
).
2.
M. A.
Biot
,
J. Appl. Phys.
33
,
1482
(
1962
).
3.
N.
Sebaa
,
Z. E. A.
Fellah
,
M.
Fellah
,
E.
Ogam
,
A.
Wirgin
,
F. G.
Mitri
,
C.
Depollier
, and
W.
Lauriks
,
J. Acoust. Soc. Am.
120
,
1816
(
2006
).
4.
C.
Boutin
,
P.
Royer
, and
J. -L.
Auriault
,
Int. J. Solids Struct.
35
,
4709
(
1998
).
5.
O.
Matsuda
and
O. B.
Wright
,
J. Opt. Soc. Am. B
19
,
3028
(
2002
).
6.
J.
Lundstedt
and
M.
Norgren
,
Prog. Electromagn. Res.
43,
1
(
2003
).
7.
L. M.
Brekhovskikh
and
Y. P.
Lysanov
,
Fundamentals of Ocean Acoustics
(
Springer
,
Berlin
,
1991
).
8.
J. L.
Buchanan
,
R. P.
Gilbert
,
A.
Wirgin
, and
Y. S.
Xu
,
Marine Acoustics: Direct and Inverse Problems
(
SIAM
,
Philadelphia
,
2004
).
9.
A. J.
Robins
,
J. Acoust. Soc. Am.
103
,
1337
(
1998
).
10.
R. H.
Stolt
and
B.
Jacobs
,
Stanford Exploration Project Report
24,
135
(
1980
).
11.
J. G.
Berryman
and
R. R.
Greene
,
Geophys. J.
45
,
213
(
1980
).
12.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer
,
New York
,
2002
).
13.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
,
J. Fluid Mech.
176
,
379
(
1987
).
14.
15.
J. F.
Allard
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
(
Chapman and Hall
,
London
,
1993
).
16.
L.
De Ryck
,
J. P.
Groby
,
P.
Leclaire
,
A.
Wirgin
,
W.
Lauriks
,
C.
Depollier
, and
Z. E. A.
Fellah
,
Appl. Phys. Lett.
90
,
181901
(
2007
).
17.
Y.
Champoux
and
J. F.
Allard
,
J. Appl. Phys.
70
,
1975
(
1991
).
18.
P.
Leclaire
,
W.
Kelders
,
L.
Lauriks
,
N. R.
Brown
,
M.
Melon
, and
B.
Castagnède
,
J. Appl. Phys.
80
,
2009
(
1996
).
19.
V.
Tournat
,
V.
Pagneux
,
D.
Lafarge
, and
L.
Jaouen
,
Phys. Rev. E
70
,
026609
(
2004
).
20.
G.
Kristensson
,
A.
Karlsson
, and
S.
Rikte
, in
Scattering
, edited by
R.
Pike
and
P.
Sabatier
(
Academic
,
San Diego
,
2002
), pp.
277
294
.
21.
L.
Knopoff
,
Bull. Seismol. Soc. Am.
54
,
431
(
1964
).
22.
R.
Hähner
, in
Scattering
, edited by
R.
Pike
and
P.
Sabatier
(
Academic
,
San Diego
,
2002
), pp.
75
94
.
23.
P.
Sabatier
, in
Scattering
, edited by
R.
Pike
and
P.
Sabatier
(
Academic
,
San Diego
,
2002
), pp.
717
725
.
24.
R. G.
Newton
, in
Scattering
, edited by
R.
Pike
and
P.
Sabatier
(
Academic
,
San Diego
,
2002
), pp.
686
701
.
25.
J. -P.
Groby
and
C.
Tsogka
, in
Mathematical and Numerical Aspects of Wave Propagation WAVES 2003
, edited by
G. C.
Cohen
and
E.
Heikkola
(
Springer
,
Berlin
,
2003
), pp.
911
915
.
26.
Z.
Alterman
,
J. Phys. Earth
16
,
113
(
1968
).
27.
G.
Kristensson
and
R. J.
Krueger
,
J. Math. Phys.
27
,
1667
(
1986
);
G.
Kristensson
and
R. J.
Krueger
,
J. Math. Phys.
27
,
1683
(
1986
).
28.
G.
Kristensson
and
R. J.
Krueger
,
J. Math. Phys.
28
,
360
(
1987
).
29.
G.
Kristensson
and
R. J.
Krueger
,
Inverse Probl.
5
,
375
(
1989
).
30.
P.
Sabatier
,
J. Math. Phys.
41
,
4082
(
2000
).
31.
J. P.
Groby
,
L.
De Ryck
,
P.
Leclaire
,
A.
Wirgin
,
W.
Lauriks
,
R. P.
Gilbert
, and
Y. S.
Xu
,
Math. Methods Appl. Sci.
30
,
91
(
2007
).
32.
S.
He
,
J. Math. Phys.
34
,
4628
(
1993
).
33.
R. J.
Krueger
and
L.
Ochs
,
Wave Motion
11
,
525
(
1989
).
34.
S. R.
Pride
and
J. G.
Berryman
,
J. Mech. Phys. Solids
46
,
719
(
1998
).
35.
J. M.
Carcione
,
Wavefield in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media
(
Pergamon
,
New York
,
2001
).
36.
M. A.
Biot
and
D. G.
Willis
,
J. Appl. Mech.
36
,
594
(
1957
).
37.
H.
Deresiewicz
and
R.
Skalak
,
Bull. Seismol. Soc. Am.
53
,
783
(
1963
).
38.
T.
Bourbié
,
O.
Coussy
, and
B.
Zinszner
,
Acoustics of Porous Media
(
Technip
,
Paris
,
1987
).
39.
M.
Fellah
,
Z. E. A.
Fellah
, and
C.
Depollier
,
Signal Process.
86
,
2658
(
2006
).
40.
d’Alembert
,
Opuscules Mathémathiques ou Mémoires sur Différens Sujets de Géométrie, de Méchanique, d’Optique, d’Astronomie
(
C.-A. Jombert
,
Paris
,
1761–1780
).
41.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Krieger
,
Malabar, FL
,
1990
).
42.
O.
Forslund
and
S.
He
,
Prog. Electromagn. Res.
19
,
147
(
1998
).
43.
C.
Rorres
,
J.
Bai
,
P. C.
Pederson
, and
O. J.
Tretiak
,
J. Acoust. Soc. Am.
78
,
1851
(
1985
).
44.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
P.
Trompette
, and
J. Y.
Chapelon
,
J. Appl. Phys.
93
,
9352
(
2003
).
45.
J. P.
Groby
 et al,
Symposium on the Acoustics of Poro-Elastic Materials
, (
ENTPE
,
Lyon, France
,
2005
), pp.
53
60
.
You do not currently have access to this content.