The impetus of this work was to investigate the electromagnetic and tensile properties of several commercially available plastoferrites (PFs) at ambient conditions. The approach involved selection of a set of PFs and measuring their complex effective permittivity ε=εjε and permeability μ=μjμ under uniaxial stress at microwave frequencies (0.14.5GHz) and room temperature. We analyze the ε and μ spectra for tensilely strained PFs up to 3%. Comparing our experimental ε data against several dielectric relaxational behaviors, we find that the main physics cannot be understood with a single relaxation mechanism. We then go on to consider the magnetic permeability spectra in the microwave range of frequencies and show that an appropriate magnetization mechanism is given by the gyromagnetic spin resonance mechanism. We use a combination of Bruggeman mean field analysis and Landau-Lifshitz-Gilbert modeling to reproduce the experimental bimodal line-shape characteristics of the effective complex magnetic permeability. These findings are discussed in light of the polydispersity in size of the ferrite gains contained in the PFs. The vibrating sample magnetometry investigations of the static magnetization are found to be consistent with this modeling. In addition, the analysis shows also how magnetized PFs respond to electromagnetic waves, and we evaluate the hysteretic behaviors of ε and μ. More importantly we show that the ε and μ measurements under stress can be explained in terms of a Gaussian molecular network model in the limit of low stress. The present results have important applications in magnetoactive smart composite materials, e.g., flexible circuit technology in the electronics industry (sensors, actuators, and micromechanical systems), functionalized artificial skin, and muscles for robotic applications.

2.
C.
Brosseau
and
A.
Beroual
,
Prog. Mater. Sci.
48
,
373
(
2003
).
3.
L. R. G.
Treloar
,
The Physics of Rubber Elasticity
(
Oxford University Press
,
Oxford
,
1975
).
4.
N. G.
McCrum
,
B. E.
Read
, and
G.
Williams
,
Anelastic and Dielectric Effects in Polymer Solids
(
Wiley
,
New York
,
1967
).
5.
See, e.g.,
Physical Properties of Polymeric Gels
, edited by
J. P.
Cohen-Addad
(
Wiley
,
Chichester
,
1996
);and
J. P.
Cohen-Addad
,
Prog. Nucl. Magn. Reson. Spectrosc.
25
,
1
(
1993
).
6.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1979
).
7.
C.
Brosseau
and
P.
Talbot
,
Meas. Sci. Technol.
16
,
1823
(
2005
).
8.
Dielectric Properties of Heterogeneous Materials
,
Progress in Electromagnetics Research
, edited by
A.
Priou
(
Elsevier
,
New York
,
1992
).
9.
A. H.
Sihvola
,
Electromagnetic Mixing Formulas and Applications
(
IEE
,
London
,
1999
).
10.
S.
Torquato
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
(
Springer
,
New York
,
2002
).
11.
D. J.
Bergman
and
D.
Stroud
,
Solid State Phys.
46
,
147
(
1992
).
12.
M.
Sahimi
,
Heterogeneous Materials I: Linear Transport and Optical Properties
(
Springer
,
New York
,
2003
).
13.
X.
Obradors
,
X.
Solans
,
A.
Collomb
,
D.
Samaras
,
J.
Rodriguez
,
M.
Prenet
, and
M.
Front-Altaba
,
J. Solid State Chem.
72
,
218
(
1988
).
14.
A.
Beroual
and
C.
Brosseau
,
IEEE Trans. Dielectr. Electr. Insul.
8
,
921
(
2001
).
15.
S.
Kolev
,
A.
Yanev
, and
I.
Nedkov
,
Phys. Status Solidi C
3
,
1308
(
2006
).
16.
P.
Toneguzzo
,
G.
Viau
,
O.
Acher
,
F.
Guillet
,
E.
Bruneton
,
F.
Fievet-Vincent
, and
F.
Fievet
,
J. Mater. Sci.
35
,
3767
(
2000
);
see
P.
Toneguzzo
,
O.
Acher
,
G.
Viau
,
F.
Guillet
,
E.
Bruneton
,
F.
Fievet-Vincent
, and
F.
Fievet
,
J. Appl. Phys.
81
,
5546
(
1997
);
G.
Viau
,
F.
Fievet-Vincent
,
F.
Fievet
,
P.
Toneguzzo
,
F.
Ravel
, and
O.
Acher
,
J. Appl. Phys.
81
,
2749
(
1997
).
17.
A.
Aharoni
,
J. Appl. Phys.
69
,
7762
(
1991
).
18.
V. B.
Bregar
and
M.
Pavlin
,
J. Appl. Phys.
95
,
6289
(
2004
).
19.
R.
Ramprasad
,
P.
Zurcher
,
M.
Petras
,
M.
Miller
, and
P.
Renaud
,
J. Appl. Phys.
96
,
519
(
2004
);
see also
R.
Ramprasad
,
P.
Zurcher
,
M.
Petras
,
M.
Miller
, and
P.
Renaud
,
Phys. Status Solidi B
233
,
31
(
2002
).
20.
J.
Verwell
, in
Magnetic Properties of Materials
, edited by
J.
Smit
(
Mc Graw-Hill
,
New York
,
1971
).
21.
K. N.
Rozanov
,
Z. W.
Li
,
L. F.
Chen
, and
M. Y.
Koledintseva
,
J. Appl. Phys.
97
,
013905
(
2005
).
22.
T.
Tsutaoka
J. Appl. Phys.
93
,
2789
(
2003
).
23.
A. L.
Adenot
,
O.
Acher
,
T.
Taffary
, and
L.
Longuet
,
J. Appl. Phys.
91
,
7601
(
2002
).
24.
T. J.
Lewis
,
IEEE Trans. Dielectr. Electr. Insul.
1
,
812
(
1994
).
25.
M. R.
Anantharamam
,
S.
Sindhu
,
S.
Jagatheesan
,
K. A.
Malini
, and
P.
Kurian
,
J. Phys. D
32
,
1801
(
1999
);
M. A.
Soloman
,
P.
Kurian
,
M. R.
Anantharamam
, and
P. A.
Joy
,
J. Elastomers Plast.
37
,
109
(
2005
);
H. J.
Kwon
,
J. Y.
Shin
, and
J. H.
Oh
,
J. Appl. Phys.
75
,
6109
(
1994
);
D. Y.
Kim
,
Y. C.
Chung
,
T. W.
Kang
, and
H. C.
Kim
,
IEEE Trans. Magn.
32
,
555
(
1996
).
26.
L.
Lanotte
,
G.
Ausanio
,
V.
Iannotti
,
G.
Pepe
,
G.
Carotenuto
,
P.
Netti
, and
L.
Nicolais
,
Phys. Rev. B
63
,
054438
(
2001
).
27.
S. G.
Mayr
, in
Encyclopedia of Materials: Science and Technology
, edited by
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Ilschner
,
E. J.
Kramer
, and
S.
Mahajan
(
Elsevier
,
Amsterdam
,
2002
).
28.
T.
Kimura
,
T.
Goto
,
M.
Shintani
,
K.
Ishizaka
,
T.
Arima
, and
Y.
Tokura
,
Nature (London)
426
,
55
(
2003
).
29.
N.
Hur
,
S.
Park
,
P. A.
Sharma
,
J. S.
Ahn
,
S.
Guha
, and
S.
Cheong
,
Nature (London)
429
,
392
(
2004
).
30.
B.
Lorenz
,
A. P.
Litvinchuk
,
M. M.
Gospodinov
, and
C. W.
Chu
,
Phys. Rev. Lett.
92
,
087204
(
2004
).
31.
T.
Lottermoser
,
T.
Lonkai
,
U.
Amann
,
D.
Hohlwein
,
J.
Ihringer
, and
M.
Fiebig
,
Nature (London)
430
,
541
(
2004
).
32.
H.
Zheng
 et al,
Science
303
,
661
(
2004
).
33.
M. P.
Bendsoe
and
N.
Kikuchi
,
Comput. Methods Appl. Mech. Eng.
71
,
197
(
1988
).
34.
O.
Sigmund
and
S.
Torquato
,
J. Mech. Phys. Solids
45
,
1037
(
1997
).
35.
S.
Torquato
and
S.
Hyun
,
J. Appl. Phys.
89
,
1725
(
2001
).
36.
H.
Fröhlich
,
Theory of Dielectrics: Dielectric Constant and Dielectric Loss
(
Clarendon
,
Oxford
,
1986
).
37.
P.
Debye
,
Polar Molecules
(
Dover
,
New York
,
1945
);
see also,
R. H.
Cole
and
K. S.
Cole
,
J. Chem. Phys.
9
,
341
(
1941
).
38.
S.
Havriliak
and
S.
Negami
,
Polymer
8
,
101
(
1967
);
see also
S. J.
Havriliak
and
S.
Havriliak
, Jr.
,
Dielectric and Mechanical Relaxation in Materials
(
Hanser
,
New York
,
1997
).
39.
A. K.
Jonscher
,
Dielectric Relaxation in Solids
(
Chelsea Dielectric
,
London
,
1987
);
see also
A. K.
Jonscher
,
Universal Relaxation Law
(
Chelsea Dielectric
,
London
,
1996
);
and more recently
A. K.
Jonscher
,
J. Phys. D
32
,
R57
(
1999
).
40.
K. L.
Ngai
and
G. B.
Wright
,
J. Non-Cryst. Solids
131–133
(
1991
).
41.
K. L.
Ngai
,
E.
Riande
, and
G. B.
Wright
,
J. Non-Cryst. Solids
172–174
(
1994
).
42.
K. L.
Ngai
,
E.
Riande
, and
G. B.
Wright
,
J. Non-Cryst. Solids
235–237
(
1998
).
43.
J.
Baker-Jarvis
,
E.
Vanzura
, and
W.
Kissick
,
IEEE Trans. Microwave Theory Tech.
38
,
1096
(
1990
).
44.
M.
Mansuripur
,
The Physical Principles of Magneto-Optical Recording
(
Cambridge University Press
,
Cambridge
,
1997
).
45.
C.
Vittoria
,
Microwave Properties of Magnetic Films
(
World Scientific
,
Singapore
,
1993
);
see also
J.
Smit
and
H. P.
Wijn
,
Ferrites-Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications
(
Wiley
,
New York
,
1959
).
46.
G. T.
Rado
,
Rev. Mod. Phys.
25
,
81
(
1953
).
47.
T.
Nakamura
,
J. Magn. Magn. Mater.
215–216
,
213
(
2000
).
48.
L.
Landau
and
E.
Lifshitz
,
Phys. Z. Sowjetunion
8
,
153
(
1935
);
see also
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevski
,
Statistical Physics
, 3rd ed. (
Pergamon
,
Oxford
,
1980
), Pt. 2;
L. D.
Landau
,
Collected Papers
, edited by
D.
ter Haar
(
Gordon and Breach
,
New York
,
1967
);
R.
Kikuchi
,
J. Appl. Phys.
27
,
1352
(
1956
).
49.
T. L.
Gilbert
,
Phys. Rev.
100
,
1243
(
1955
).
50.
C. P.
Sclichter
,
Principle of Magnetic Resonance
(
Springer-Verlag
,
Berlin
,
1978
).
51.
C.
Brosseau
,
J.
Ben-Youssef
,
P.
Talbot
, and
A.-M.
Konn
,
J. Appl. Phys.
93
,
9243
(
2003
);
C.
Brosseau
and
P.
Talbot
,
J. Appl. Phys.
97
,
104325
(
2005
).
You do not currently have access to this content.