Extremely low emittance electron beams are required for next generation accelerators. GaAs semiconductor photocathodes with negative electron affinity (NEA) surfaces have an intrinsic advantage for generating such low emittance beams and the thermal emittance as low as 0.1πmmmrad is expected in ideal case. The thermal emittance of photoelectrons was measured for two different NEA photocathodes: a bulk-GaAs photocathode and a GaAs-GaAsP superlattice strained photocathode. The normalized root-mean-sqare emittances for the beam radius of 1.0 mm were as low as 0.200.29±0.02 and 0.15±0.02πmmmrad, respectively. A comparison of these results shows that the superlattice photocathode minimizes the thermal emittance for photon excitation energies higher than the band gap energy.

1.
S. M.
Gruner
,
D.
Bilderback
,
I.
Bazarov
,
K.
Finkelstein
,
G.
Krafft
,
L.
Merminga
,
H.
Padamsee
,
Q.
Shen
,
C.
Sinclair
, and
M.
Tigner
,
Rev. Sci. Instrum.
73
,
1402
(
2002
).
2.
T.
Nakanishi
,
H.
Aoyagi
,
H.
Horinaka
,
Y.
Kamiya
,
T.
Kato
,
S.
Nakamura
,
T.
Saka
, and
M.
Tsubata
,
Phys. Lett. A
158
,
345
(
1991
).
3.
T.
Omori
 et al,
Jpn. J. Appl. Phys., Part 1
33
,
5676
(
1994
).
4.
Y.
Mamaev
,
A.
Subashiev
,
Y.
Yashin
,
E.
Reichert
,
P.
Drescher
,
N.
Faleev
,
P.
Kop’ev
,
V.
Yustinov
, and
A.
Zhukov
,
Phys. Low-Dimens. Semicond. Struct.
10/11
,
1
(
1995
).
5.
D. T.
Pierce
,
F.
Meier
, and
P.
Zürcher
,
Appl. Phys. Lett.
26
,
670
(
1975
).
6.
C. Y.
Prescott
 et al,
Phys. Lett. B
77
,
347
(
1978
).
7.
M.
Meyerhoff
 et al,
Phys. Lett. B
327
,
201
(
1994
).
8.
9.
S.
Mayer
and
J.
Kessler
,
Phys. Rev. Lett.
74
,
4803
(
1995
).
10.
B. M.
Dunham
and
L. S.
Cardman
,
PAC 95 and IUPAP
,
1996
, Vol.
2
*, p.
1030
.
11.
S.
Pastuszka
,
M.
Hoppe
,
D.
Kratzmann
,
D.
Schwalm
,
A.
Wolf
,
A.
Jaroshevich
,
S.
Kosolobov
,
D.
Orlov
, and
A.
Terekhov
,
J. Appl. Phys.
88
,
6788
(
2000
).
12.
Y.
Yamazaki
,
T.
Kurihara
,
H.
Kobayashi
,
I.
Sato
, and
A.
Asami
,
Nucl. Instrum. Methods Phys. Res. A
322
,
139
(
1992
).
13.
N.
Yamamoto
 et al,
Proceeding of Free Electron Laser 2003
(
Tsukuba
,
Japan
,
2003
).
14.
T.
Nakanishi
 et al,
KEK
Report 97–1,
1997
.
15.
K.
Wada
 et al,
AIP Conf. Proc.
570
,
1012
(
2001
).
16.
K.
Wada
,
AIP Conf. Proc.
675
,
1063
(
2003
).
17.
T.
Nishitani
,
J. Appl. Phys.
97
,
094907
(
2005
).
18.
V. L.
Alperovich
,
A. G.
Paulish
,
H. E.
Scheibler
, and
A. S.
Terekov
,
Appl. Phys. Lett.
66
,
2122
(
1995
).
19.
A.
Buzulutskov
,
A.
Breskin
, and
R.
Chechik
,
J. Appl. Phys.
81
,
466
(
1997
).
20.
K.
Togawa
 et al,
Nucl. Instrum. Methods Phys. Res. A
455
,
118
(
2000
).
21.
T.
Maruyama
,
A.
Brachmann
,
J.
Clendenin
,
T.
Desikan
,
E.
Garwin
,
R.
Kirby
,
D.
Luh
,
J.
Turner
, and
R.
Prepost
,
Nucl. Instrum. Methods Phys. Res. A
492
,
199
(
2002
).
22.
Y.
Kurihara
 et al,
Jpn. J. Appl. Phys., Part 1
34
,
355
(
1995
).
23.
M.
Tawada
 et al,
Jpn. J. Appl. Phys., Part 1
36
,
2863
(
1997
).
24.
M.
Togawa
 et al,
Nucl. Instrum. Methods Phys. Res. A
414
,
431
(
1998
).
You do not currently have access to this content.