Through molecular dynamics simulation of nanoindentation of amorphous aSiC, we have found a correlation between its atomic structure and the load-displacement (Ph) curve. We show that a density profile of aSiC exhibits oscillations normal to the surface, analogous to liquid metal surfaces. Short-range Ph response of aSiC is similar to that of crystalline 3CSiC, e.g., it shows a series of load drops associated with local rearrangements of atoms. However, the load drops are less pronounced than in 3CSiC due to lower critical stress required for rearrangement of local clusters of atoms. The nanoindentation damage is less localized than in 3CSiC. The maximum pressure under the indenter is 60% lower than in 3CSiC with the same system geometry. The onset of plastic deformation occurs at the depth of 0.5Å, which is 25% of the corresponding value in 3CSiC. aSiC exhibits lower damping as compared to 3CSiC, which is reflected in the longer relaxation time of transient forces after each discrete indentation step.

1.
M.
Bhatnagar
and
B. J.
Baliga
,
IEEE Trans. Electron Devices
40
,
645
(
1993
).
2.
S. J.
Przybylko
,
American Institute of Aeronautics and Astronautics
, Washington, DC, Report AIAA 93-2581, June
1993
.
3.
W. C.
Trew
,
J.-B.
Yan
, and
P. M.
Mock
,
Proc. IEEE
79
,
598
(
1991
).
4.
K.
Yamada
and
M.
Mohri
, in
Silicon Carbide Ceramics: 1
, edited by
S.
Somiya
and
Y.
Inomata
(
Elsevier
,
London
,
1991
).
5.
B.
Gorancher
,
K.
Reichelt
,
J.
Chevallier
,
P.
Hornshoj
,
H.
Dimigen
, and
H.
Hubsch
,
Thin Solid Films
139
,
275
(
1986
).
6.
M.
LeContellec
,
J.
Richard
,
A.
Guivrach
,
E.
Ligeon
, and
J.
Fontenille
,
Thin Solid Films
58
,
407
(
1979
).
7.
M.
Chaker
 et al.,
J. Vac. Sci. Technol. B
10
,
3191
(
1992
).
8.
G. M.
Wells
,
S.
Palmer
,
F.
Cerrina
,
A.
Purdes
, and
B.
Gnade
,
J. Vac. Sci. Technol. B
8
,
1575
(
1990
).
9.
H.
Windischmann
,
J. Vac. Sci. Technol. A
9
,
2459
(
1991
).
10.
D.
Emin
,
T. L.
Aselage
, and
C.
Wood
,
Novel Refractory Semiconductors Symposium
,
Anaheim, CA
, 21–23 April,
1987
(
Materials Research Society
,
Pittsburgh, PA
,
1987
).
11.
J.
Knap
and
M.
Ortiz
,
Phys. Rev. Lett.
90
,
226102
(
2003
).
12.
G. M.
Pharr
,
W. C.
Oliver
, and
D. S.
Harding
,
J. Mater. Res.
6
,
1129
(
1991
).
13.
G. S.
Smith
,
E. B.
Tadmor
, and
E.
Kaxiras
,
Phys. Rev. Lett.
84
,
1260
(
2000
).
14.
D. R.
Clarke
,
M. C.
Kroll
,
P. D.
Kirchner
, and
R. F.
Coof
,
Phys. Rev. Lett.
60
,
2156
(
1988
).
15.
M. F.
Doerner
and
W. D.
Nix
,
J. Mater. Res.
1
,
601
(
1986
).
16.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
17.
H. M.
Pollock
, in
Handbook of Micro∕Nano Tribology
, edited by
B.
Bhushan
(
CRC
,
New York
,
1995
), p.
321
.
18.
J. E.
Bradby
,
J. S.
Williams
, and
M. V.
Swain
,
Phys. Rev. B
67
,
085205
(
2003
).
20.
I.
Szlufarska
,
Mater. Today
9
(
2006
).
21.
I.
Szlufarska
,
A.
Nakano
, and
P.
Vashishta
,
Science
309
,
911
(
2005
).
22.
M. A. E.
Khakani
,
M.
Chaker
,
A.
Jean
,
S.
Boily
,
J. C.
Kieffer
,
M. E.
O’Hern
,
M. F.
Ravet
, and
F.
Rousseaux
,
J. Mater. Res.
9
,
96
(
1994
).
23.
T. D.
Raju
,
M.
Kato
, and
K.
Nakasa
,
Acta Mater.
51
,
3585
(
2003
).
24.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
,
Phys. Rev. B
58
,
11085
(
1998
).
25.
K. J. V.
Vliet
,
J.
Li
,
T.
Zhu
,
S.
Yip
, and
S.
Suresh
,
Phys. Rev. B
67
,
104105
(
2003
).
26.
A.
Gouldstone
,
K. J. V.
Vliet
, and
S.
Suresh
,
Nature (London)
411
,
656
(
2001
).
27.
J. A.
Zimmerman
,
C. L.
Kelchner
,
P. A.
Klein
,
J. C.
Hamilton
, and
S. M.
Foiles
,
Phys. Rev. Lett.
87
,
165507
(
2001
).
28.
I.
Szlufarska
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Appl. Phys. Lett.
85
,
378
(
2004
).
29.
J. B.
Pethica
and
W. C.
Oliver
, in
Thin Films: Stresses and Mechanical Properties
, edited by
J. C.
Bravman
 et al.,
MRS Symposia Proceedings No. 130
(
Materials Research Society
,
Pittsburgh
,
1989
), p.
13
.
30.
T. F.
Page
,
W. C.
Oliver
, and
C. J.
McHargue
,
J. Mater. Res.
7
,
450
(
1992
).
31.
J. J.
Gilman
,
J. Appl. Phys.
44
,
675
(
1973
).
32.
N.
Rivier
,
Philos. Mag. A
40
,
859
(
1979
).
33.
W.
Klement
,
R. H.
Willens
, and
P.
Duwez
,
Nature (London)
187
,
869
(
1960
).
34.
D. B.
Miracle
,
Nat. Mater.
3
,
697
(
2004
).
35.
F.
Albano
and
M. L.
Falk
,
J. Chem. Phys.
122
,
154508
(
2005
).
36.
Y.
Shi
and
M. L.
Falk
,
Phys. Rev. Lett.
95
,
095502
(
2005
).
37.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
38.
W. G.
Stratton
,
J.
Hamann
,
J. H.
Perepezko
,
P. M.
Voyles
,
X.
Mao
, and
S. V.
Khare
,
Appl. Phys. Lett.
86
,
141910
(
2005
).
40.
E. T.
Lilleodden
,
J. A.
Zimmerman
, and
S. M.
Foiles
,
J. Mech. Phys. Solids
51
,
901
(
2003
).
41.
U.
Landman
,
W. D.
Luedtke
,
N. A.
Burnham
, and
R. J.
Colton
,
Science
248
,
454
(
1990
).
42.
J.
Belak
,
D. B.
Boercker
, and
I. F.
Stowers
,
MRS Bull.
18
,
55
(
1993
).
43.
K.
Komvopoulos
and
W.
Yan
,
J. Appl. Phys.
82
,
4823
(
1997
).
44.
R.
Smith
,
D.
Christopher
, and
S. D.
Kenny
,
Phys. Rev. B
67
,
245405
(
2003
).
45.
J. S.
Kallman
,
W. G.
Hoover
,
C. G.
Hoover
,
A. J. D.
Groot
,
S. M.
Lee
, and
F.
Wooten
,
Phys. Rev. B
47
,
7705
(
1993
).
46.
P.
Walsh
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Appl. Phys. Lett.
77
,
4332
(
2000
).
47.
D. W.
Brenner
,
S. B.
Sinnott
,
J. A.
Harrison
, and
O. A.
Shenderova
,
Nanotechnology
7
,
161
(
1996
).
48.
W. C. D.
Cheong
and
L. C.
Zhang
,
Nanotechnology
11
,
173
(
2000
).
49.
J. A.
Harrison
,
C. T.
White
,
R. J.
Colton
, and
D. W.
Brenner
,
Surf. Sci.
271
,
57
(
1992
).
50.
V. B.
Shenoy
,
R.
Phillips
, and
E. B.
Tadmor
,
J. Mech. Phys. Solids
48
,
649
(
2000
).
51.
F.
Dzegilenko
,
D.
Srivastava
, and
S.
Saini
,
Nanotechnology
10
,
253
(
1999
).
52.
I.
Szlufarska
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Appl. Phys. Lett.
86
,
021915
(
2005
).
53.
J. P.
Rino
,
I.
Ebbsjo
,
P. S.
Braniccio
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
70
,
045207
(
2004
).
54.
Y.
Shi
and
M. L.
Falk
,
Appl. Phys. Lett.
86
,
011914
(
2005
).
55.
S. B.
Sinnott
,
R. J.
Colton
,
C. T.
White
,
O. A.
Shenderova
,
D.
Brenner
, and
J.
Harrison
,
J. Vac. Sci. Technol. A
15
,
936
(
1997
).
56.
M.
Rarivomanantsoa
,
P.
Jund
, and
R.
Jullien
,
J. Phys.: Condens. Matter
13
(
2001
).
57.
P.
Vashishta
,
R. K.
Kalia
,
A.
Nakano
,
W.
Li
, and
I.
Ebbsjoe
,
Amorphous Insulators and Semiconductors
, edited by
M. F.
Thorpe
and
M. I.
Mitkova
,
NATO ASI, Series 3: Technology
Vol.
23
(
Kluwer
,
Dordrecht
,
1997
), p.
151
.
58.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
59.
Even in the most covalent materials such as Si, it has been shown [
N.
Bernstein
and
D. W.
Hess
,
Phys. Rev. Lett.
91
,
025501
(
2003
)]
[PubMed]
that a purely short-range potential cannot reproduce certain material properties (e.g., brittleness during fracture) in configurations far from bulk crystals, and more recent potentials for covalent materials [
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, III
,
J. Phys. Chem. A
105
,
9396
(
2001
)] do include van der Waals interactions.
60.
P.
Vashishta
,
R. K.
Kalia
,
A.
Nakano
, and
J. P.
Rino
,
J. Appl. Phys.
101
,
103515
(
2007
).
61.
A.
Taylor
and
R. M.
Jones
, in
Silicon Carbide: A High Temperature Semiconductor
, edited by
J. R.
O’Connor
and
J.
Smliltens
(
Pergamon
,
New York
,
1960
), p.
147
.
62.
W. R.
Lambrecht
,
B.
Segall
,
M.
Methfessel
, and
M. v.
Schilfgaarde
,
Phys. Rev. B
44
,
3685
(
1991
).
63.
F.
Shimojo
,
I.
Ebbsjo
,
R. K.
Kalia
,
A.
Nakano
,
J. P.
Rino
, and
P.
Vashishta
,
Phys. Rev. Lett.
84
,
3338
(
2000
).
64.
M.
Catti
,
Phys. Rev. Lett.
87
,
033504
(
2001
).
65.
J. M.
Perez-Mato
,
M.
Aroyo
,
C.
Capillas
,
P.
Blaha
, and
K.
Schwarz
,
Phys. Rev. Lett.
90
,
049603
(
2003
).
66.
J. R.
Ray
and
A.
Rahman
,
J. Chem. Phys.
82
,
4243
(
1985
).
67.
M.
Parrinello
and
A.
Rahman
,
Phys. Rev. Lett.
45
,
1196
(
1980
).
68.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
69.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
(
1992
).
70.
The schedule for preparing an amorphous model was shown to be important [
W. D.
Luedtke
and
U.
Landman
,
Phys. Rev. B
40
,
1164
(
1989
)]
for the quality of the resulting structure. Our previous MD simulations of amorphous SiC [
J. P.
Rino
,
I.
Ebbsjo
,
P. S.
Branicio
,
R. K.
Kalia
,
A.
Nakano
,
F.
Shimojo
, and
P.
Vashishta
,
Phys. Rev. B
70
,
045207
(
2004
)],
SiO2 [
A.
Nakano
,
R. K.
Kalia
, and
P.
Vashishta
,
J. Non-Cryst. Solids
171
,
157
(
1994
)],
and Si3N4 [
P.
Vashistha
,
R.
Kalia
, and
I.
Ebbsjö
,
Phys. Rev. Lett.
75
,
858
(
1995
)] have shown that the melt-quench method using the interatomic potential scheme in the present paper provides high-quality amorphous structures that are in excellent agreement with neutron and x-ray scattering measurements.
[PubMed]
71.
Y.
Katayama
,
K.
Usami
, and
T.
Shimada
,
Philos. Mag. B
43
,
283
(
1981
).
72.
P. I.
Rovira
and
F.
Alvares
,
Phys. Rev. B
55
,
4426
(
1997
).
73.
A.
Sproul
,
D. R.
McKenzie
, and
D. J. H.
Cockayne
,
Philos. Mag. B
54
,
113
(
1986
).
74.
A. E.
Kaloyeros
,
R. B.
Rizk
, and
J. B.
Woodhouse
,
Phys. Rev. B
38
,
13099
(
1988
).
75.
C.
Meneghini
,
S.
Pascarelli
,
F.
Boscherini
,
S.
Mobilio
, and
F.
Evangelisti
,
J. Non-Cryst. Solids
137
,
75
(
1991
).
76.
S.
Pascarelli
,
F.
Boscherini
,
S.
Mobilio
, and
F.
Evangelisti
,
Phys. Rev. B
45
,
1650
(
1992
).
77.
J.
Seekamp
and
W.
Bauhofer
,
J. Non-Cryst. Solids
230
,
474
(
1998
).
78.
P. C.
Kelires
and
P. J. H.
Denteer
,
J. Non-Cryst. Solids
231
,
200
(
1998
).
79.
P. C.
Kelires
and
P. J. H.
Denteneer
,
Solid State Commun.
87
,
851
(
1993
).
80.
P. C.
Kelires
,
Phys. Rev. B
46
,
10048
(
1992
).
81.
P. C.
Kelires
,
Europhys. Lett.
14
,
43
(
1991
).
82.
F.
Finocchi
,
G.
Galli
,
M.
Parrinello
, and
C. M.
Bertoni
,
Phys. Rev. Lett.
68
,
3044
(
1992
).
83.
84.
V. I.
Ivashchenko
,
P. E.
Turchi
,
V. I.
Shevchenko
,
L. A.
Ivashchenko
, and
G. V.
Rusakov
,
Phys. Rev. B
66
,
195201
(
2002
).
85.
M.
Ishimaru
,
I. T.
Bae
,
Y.
Hirotsu
,
S.
Matsumura
, and
K. E.
Sickafus
,
Phys. Rev. Lett.
89
,
055502
(
2002
).
86.
J. M.
Williams
,
C. J.
McHargue
, and
B. R.
Appleton
,
Nucl. Instrum. Methods Phys. Res.
209∕210
,
317
(
1983
).
87.
T.
Hioki
,
A.
Itoh
,
M.
Okubo
,
S.
Noda
,
H.
Doi
,
J.
Kawamoto
, and
O.
Kamigaito
,
J. Mater. Sci.
21
,
1321
(
1986
).
88.
V.
Heera
,
J.
Stoemenos
,
R.
Kogler
, and
W.
Skorupa
,
J. Appl. Phys.
77
,
2999
(
1995
).
89.
V.
Heera
,
E.
Prokert
,
N.
Schell
,
H.
Seifarth
,
W.
Fukarek
,
M.
Voelskow
, and
W.
Skorupa
,
Appl. Phys. Lett.
70
,
3531
(
1997
).
90.
We are currently examining the effects of different boundary conditions such as in
J.
Li
,
K. J.
van Vilet
,
T.
Zhu
,
S.
Yip
, and
S.
Suresh
,
Nature (London)
418
,
307
(
2002
).
91.
This is the first step to systematically study nanoindentation of SiC, in which various physical effects are introduced step by step to discern their consequences. The second step will introduce the nonrigidity of the indenter, and the third to include attractive indenter-substrate interactions. We have applied such a systematic simulation procedure to nanoindentation in Si3N4 (
P.
Walsh
, Ph.D. thesis,
Louisiana State University
,
1999
).
92.
93.
I.
Ebbsjo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
J. Appl. Phys.
87
,
7708
(
2000
).
94.
J. P.
Rino
,
I.
Ebbsjo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
47
,
3053
(
1993
).
95.
H.
Iyetomi
,
P.
Vashishta
, and
R. K.
Kalia
,
J. Non-Cryst. Solids
262
,
135
(
2000
).
You do not currently have access to this content.