To prepare polycrystalline silicon (poly-Si) films at low temperatures (<400°C) with high deposition rate, we propose a chemical transport method using atmospheric-pressure pure hydrogen plasma, called the atmospheric-pressure enhanced chemical transport method. In this method, high-pressure (200760Torr) stable glow plasma of pure hydrogen was generated by a 150MHz very high frequency power between the two parallel electrodes less than 2mm apart. One of the electrodes is composed of the cooled Si solid source and the other the heated substrate (200400°C). According to the temperature dependence of hydrogen etching rate of Si, SiHx species are mainly generated at the cooled Si solid source by hydrogen atoms. These species are again decomposed in the plasma, transported to the substrate to form Si films. In the present experiments on poly-Si film formation, a high deposition rate of 300nmmin was achieved at 400°C, and nearly ideal utilization efficiencies (>93%) of Si solid source was realized in every condition. Si grains formed on a (001) Si substrate revealed anisotropic morphology elongated along ⟨110⟩ directions, and most of them had columnar structures epitaxially grown to the thickness of 2μm even at 200°C.

1.
N.
Kosku
and
S.
Miyazaki
,
Thin Solid Films
511–512
,
265
(
2006
).
2.
J.-D.
Gu
and
P.-L.
Chen
,
Thin Solid Films
498
,
2
(
2006
).
3.
N.
Fujiki
,
Y.
Nakatani
,
K.
Inoue
,
M.
Okuyama
, and
Y.
Hamakawa
,
Jpn. J. Appl. Phys., Part 1
28
,
829
(
1989
).
4.
H.
Sunayama
,
K.
Yamada
,
M.
Karasawa
, and
K.
Ishibashi
,
Thin Solid Films
430
,
226
(
2003
).
5.
A.
Focsa
,
A.
Slaoui
,
E.
Pihan
,
F.
Snijkers
,
P.
Leempoel
,
G.
Beaucarne
, and
J.
Poortmans
,
Thin Solid Films
511–512
,
404
(
2006
).
6.
Y.
Fujioka
 et al.,
Sol. Energy Mater. Sol. Cells
90
,
3416
(
2006
).
7.
Y.
Mori
,
K.
Yoshii
,
K.
Yasutake
,
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Wada
,
Thin Solid Films
444
,
138
(
2003
).
8.
S.
Veprek
and
V.
Marecek
,
Solid-State Electron.
11
,
683
(
1968
).
9.
H.
Matsumura
,
K.
Kamesaki
,
A.
Masuda
, and
A.
Izumi
,
Jpn. J. Appl. Phys., Part 2
40
,
L289
(
2001
).
10.
A. P.
Webb
and
S.
Veprek
,
Chem. Phys. Lett.
62
,
173
(
1979
).
11.
H.
Ohmi
,
H.
Kakiuchi
,
K.
Nishijima
,
H.
Watanabe
, and
K.
Yasutake
,
Jpn. J. Appl. Phys., Part 1
45
,
8488
(
2006
).
12.
P.
Gupta
,
V. L.
Colvin
, and
S. M.
George
,
Phys. Rev. B
37
,
8234
(
1988
).
13.
T.
Ohmi
,
J. Electrochem. Soc.
143
,
2957
(
1996
).
14.
H.
Ohmi
,
H.
Kakiuchi
,
K.
Yasutake
,
Y.
Nakahama
,
Y.
Ebata
,
K.
Yoshii
, and
Y.
Mori
,
Jpn. J. Appl. Phys., Part 1
45
,
3581
(
2006
).
15.
M.
Takai
,
T.
Nishimoto
,
M.
Kondo
, and
A.
Matsuda
,
Appl. Phys. Lett.
77
,
2828
(
2000
).
16.
S.
Takashima
,
M.
Hori
,
T.
Goto
,
A.
Kono
, and
K.
Yoneda
,
J. Appl. Phys.
90
,
5497
(
2001
).
17.
M.
Mozeti
,
A.
Vesel
,
V.
Monna
, and
A.
Ricard
,
Vacuum
71
,
201
(
2003
).
18.
H.
Kakinuma
,
M.
Mohri
,
M.
Sakamoto
, and
T.
Tsuruoka
,
J. Appl. Phys.
70
,
7374
(
1991
).
19.
G.
Lucovsky
,
R. J.
Nemanich
, and
J. C.
Knights
,
Phys. Rev. B
19
,
2064
(
1979
).
20.
M.
Niwano
,
J.
Kageyama
,
K.
Kurita
,
K.
Kinashi
,
I.
Takahashi
, and
N.
Miyamoto
,
J. Appl. Phys.
76
,
2157
(
1994
).
21.
S. M.
Gates
,
R. R.
Kunz
, and
C. M.
Greenlief
,
Surf. Sci.
207
,
364
(
1989
).
22.
G. A.
Hebner
,
E. V.
Barrat
,
P. A.
Miller
,
A. M.
Paterson
, and
J. P.
Holland
,
Plasma Sources Sci. Technol.
15
,
879
(
2006
).
23.
P. A.
Miller
,
G. A.
Hebner
,
K. E.
Greenberg
, and
P. D.
Pochan
,
J. Res. Natl. Inst. Stand. Technol.
100
,
427
(
1995
).
24.
T.
Novikova
,
B.
Kalache
,
P.
Bulkin
,
K.
Hassouni
,
W.
Morscheidt
, and
P.
Roca i Cabarrocas
,
J. Appl. Phys.
93
,
3198
(
2003
).
25.
A.
Matsuda
,
M.
Takai
,
T.
Nishimoto
, and
M.
Kondo
,
Sol. Energy Mater. Sol. Cells
78
,
3
(
2003
).
26.
U.
Frantz
,
Contrib. Plasma Phys.
42
,
675
(
2002
).
You do not currently have access to this content.