In this paper, we present four GaN based polar quantum structures grown on c-plane embedded in p-i-n diode architecture as a part of high-speed electroabsorption modulators for use in optical communication (free-space non-line-of-sight optical links) in the ultraviolet (UV): the first modulator incorporates 46nm thick GaNAlGaN quantum structures for operation in the deep-UV spectral region and the other three incorporate 23nm thick InGaNGaN quantum structures tuned for operation in violet to near-UV spectral region. Here, we report on the design, epitaxial growth, fabrication, and characterization of these quantum electroabsorption modulators. In reverse bias, these devices exhibit a strong electroabsorption (optical absorption coefficient change in the range of 550013000cm1 with electric field swings of 4075Vμm) at their specific operating wavelengths. In this work, we show that these quantum electroabsorption structures hold great promise for future applications in ultraviolet optoelectronics technology such as external modulation and data coding in secure non-line-of-sight communication systems.

1.
S. P.
Denbaars
,
Proc. IEEE
85
,
1740
(
1997
).
2.
M. A.
Khan
,
M.
Shatalov
,
H. P.
Maruska
,
H. M.
Wang
, and
E.
Kuokstis
,
Jpn. J. Appl. Phys., Part 1
44
,
7191
(
2005
).
3.
E.
Fred Schubert
,
Light Emitting Diodes
(
Cambridge University Press
,
New York
,
2006
).
4.
S.
Nakamura
,
G.
Fasol
, and
S. J.
Pearton
,
The Blue Laser Diode: The Complete Story
(
Springer
,
New York
,
2000
).
5.
E.
Sari
,
S.
Nizamoglu
,
T.
Ozel
, and
H. V.
Demir
,
Appl. Phys. Lett.
90
,
011101
(
2007
).
6.
A. M.
Siegel
,
G. A.
Shaw
, and
J.
Model
,
Proc. SPIE
5417
,
214
(
2004
).
7.
T. S.
Rappaport
,
Wireless Communications: Principles and Practice
(
IEEE
,
Piscataway, NJ
,
1996
).
8.
G. A.
Shaw
,
A. M.
Siegel
, and
J.
Model
,
IEEE LEOS Newsletter
19
,
5
(
2005
).
9.
D. E.
Sunstein
, “
A Scatter Communications Link at Ultraviolet Frequencies
,” Thesis, MIT,
1968
.
10.
S. F.
Chichibu
,
A.
Shikanai
,
T.
Deguchi
,
A.
Setoguchi
,
R.
Nakai
,
H.
Nakanishi
,
K.
Wada
,
S. P.
DenBaars
,
T.
Sota
, and
S.
Nakamura
,
Jpn. J. Appl. Phys., Part 1
39
,
2417
(
2000
).
11.
D. M.
Graham
,
A.
Soltani-Vala
,
P.
Dawson
,
M. J.
Godfrey
,
T. M.
Smeeton
,
J. S.
Barnard
,
M. J.
Kappers
,
C. J.
Humphreys
, and
E. J.
Thrush
,
J. Appl. Phys.
97
,
103508
(
2005
).
12.
A. A.
Allerman
,
M. H.
Crawford
,
A. J.
Fischer
,
K. H. A.
Bogart
,
S. R.
Lee
,
D. M.
Follstaedt
,
P. P.
Provencio
, and
D. D.
Koleske
,
J. Cryst. Growth
272
,
227
(
2004
).
13.
I.
Akasaki
and
H.
Amano
,
Jpn. J. Appl. Phys., Part 1
36
,
5393
(
1997
).
14.
I.
Friel
,
C.
Thomidis
, and
T. D.
Moustakas
,
J. Appl. Phys.
97
,
123515
(
2005
).
15.
S.
Nizamoglu
,
T.
Ozel
,
E.
Sari
, and
H. V.
Demir
,
Nanotechnology
18
,
065709
(
2007
).
16.
H. V.
Demir
,
S.
Nizamoglu
,
T.
Ozel
,
E.
Mutlugun
,
I. O.
Huyal
,
E.
Sari
,
E.
Holder
, and
N.
Tian
,
New J. Phys.
9
,
362
(
2007
).
17.
P.
Schlotter
,
J.
Baur
,
Ch.
Hielscher
,
M.
Kunzer
,
H.
Obloh
,
R.
Schmidt
, and
J.
Schneider
,
Mater. Sci. Eng., B
59
,
390
(
1999
).
18.
H. V.
Demir
,
V. A.
Sabnis
,
O.
Fidaner
,
J. S.
Harris
,
D. A. M.
Miller
, and
J. F.
Zheng
,
IEEE J. Sel. Top. Quantum Electron.
11
,
86
(
2005
).
19.
H. V.
Demir
,
V. A.
Sabnis
,
J. F.
Zheng
,
O.
Fidaner
,
J. S.
Harris
, and
D. A. B.
Miller
,
IEEE Photonics Technol. Lett.
16
,
2305
(
2004
).
20.
V. A.
Sabnis
,
H. V.
Demir
,
O.
Fidaner
,
J. S.
Harris
,
D. A. B.
Miller
,
J. F.
Zheng
,
N.
Li
,
T. C.
Wu
,
H. T.
Chen
, and
Y. M.
Houng
,
Appl. Phys. Lett.
84
,
469
(
2004
).
21.
H.
Shichijo
,
R. M.
Kolbas
,
N.
Holonyak
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
Solid State Commun.
27
,
10
(
1978
).
22.
A. E.
Oberhofer
,
J. F.
Muth
,
M. A. L.
Johnson
,
Z. Y.
Chen
,
E. F.
Fleet
, and
G. D.
Cooper
,
Appl. Phys. Lett.
83
,
2748
(
2003
).
23.
M.
Kneissl
,
T. L.
Paoli
,
P.
Kiesel
,
D. W.
Treat
,
M.
Teepe
,
N.
Miyashita
, and
N. M.
Johnson
,
Appl. Phys. Lett.
80
,
3283
(
2002
).
You do not currently have access to this content.