We study the phase transition from amorphous to face-centered-cubic (fcc) polycrystalline Ge2Sb2Te5 thin films. The transformation has the peculiar characteristic, still not well understood, of coexisting high transition rates at low annealing temperature (with grain growth velocities of the order of 1nmmin at 140°C) and large activation energies (about 22.5eV). In this work all kinetic parameters governing the transition have been determined by in situ transmission electron microscopy analysis. They are thermally activated and consistently show large anomalies in the preexponential terms of transient and steady-state nucleation rates and grain growth rate. A possible explanation for these observations is described, based on a recently proposed atomic structure of the fcc Ge2Sb2Te5, characterized by a high level of disorder and distortion at the short range.

1.
S.
Lai
and
T.
Lowrey
,
Tech. Dig. - Int. Electron Devices Meet.
2001
,
36
5
.
2.
ITRS03
,
International Roadmap for Semiconductors
(
Clarendon
,
Oxford
,
2003
).
3.
M. H. R.
Lankhorst
,
B. W. S. S.
Ketelaars
, and
R. A. M.
Wolters
,
Nat. Mater.
4
,
347
(
2005
).
4.
V.
Weidenhof
,
I.
Friedrich
,
S.
Ziegler
, and
M.
Wuttig
,
J. Appl. Phys.
89
,
3168
(
2001
).
5.
T. H.
Jeong
,
M. R.
Kim
,
H.
Seo
,
S. J.
Kim
, and
S. Y.
Kim
,
J. Appl. Phys.
86
,
774
(
1999
).
6.
N.
Ohshima
,
J. Appl. Phys.
79
,
8357
(
1996
).
7.
I.
Friedrich
,
V.
Weidenhof
,
W.
Njoroge
,
P.
Franz
, and
M.
Wuttig
,
J. Appl. Phys.
87
,
4130
(
2000
).
8.
B. J.
Kooi
,
W. M. G.
Groot
, and
J. Th. M.
De Hosson
,
J. Appl. Phys.
95
,
924
(
2004
).
9.
S.
Privitera
,
C.
Bongiorno
,
E.
Rimini
, and
R.
Zonca
,
Appl. Phys. Lett.
84
,
4448
(
2004
).
10.
J. A.
Kalb
,
C. Y.
Wen
,
F.
Spaepen
,
H.
Dieker
, and
M.
Wuttig
,
J. Appl. Phys.
98
,
054902
(
2005
).
11.
J.
Kalb
,
F.
Spaepen
, and
M.
Wuttig
,
Appl. Phys. Lett.
84
,
5240
(
2004
).
12.
S.
Turnbull
and
J. C.
Fisher
,
J. Chem. Phys.
17
,
71
(
1949
).
13.
R.
Becker
and
W.
Döring
,
Ann. Phys.
24
,
719
(
1935
).
14.
V. A.
Shneidman
,
Sov. Phys. Tech. Phys.
33
,
1338
(
1988
).
15.
V. A.
Shneidman
,
Sov. Phys. Tech. Phys.
32
,
76
(
1987
).
16.
V. A.
Shneidman
,
Phys. Rev. A
44
,
2609
(
1991
).
17.
J. W.
Christian
,
The Theory of Transformations in Metals and Alloys
, 2nd ed. (
Pergamon Oxford
,
1995
), Part 1.
18.
C.
Spinella
,
S.
Lombardo
, and
F.
Priolo
,
J. Appl. Phys.
84
,
5383
(
1998
).
19.
G.
Ruitenberg
,
A. K.
Petford-Long
, and
R. C.
Doole
,
J. Appl. Phys.
92
,
3116
(
2002
).
20.
E.
Morales Sanchez
,
E. F.
Prokhorov
,
A.
Mendoza-Galván
, and
J.
González-Hernández
,
J. Appl. Phys.
91
,
697
(
2002
).
21.
J.
Kalb
,
F.
Spaepen
, and
M.
Wuttig
,
J. Appl. Phys.
93
,
2389
(
2003
).
22.
A.
Aydinli
,
M.
Berti
,
A. V.
Drigo
,
R.
Lotti
, and
P. G.
Merli
,
J. Appl. Phys.
64
,
3301
(
1988
).
23.
M. O.
Thompson
,
G. J.
Galvin
,
J. W.
Mayer
,
P. S.
Peercy
,
J. M.
Poate
,
D. C.
Jacobson
,
A. G.
Cullis
, and
N. G.
Chew
,
Phys. Rev. Lett.
52
,
2360
(
1984
).
24.
A.
Hill
,
Nature (London)
348
,
426
(
1990
).
25.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
,
N.
Akahira
, and
M.
Takao
,
J. Appl. Phys.
69
,
2849
(
1991
).
26.
A.
Kolobov
,
P.
Fons
,
A. I.
Frenkel
,
A. L.
Ankudinov
,
J.
Tominaga
, and
T.
Uruga
,
Nat. Mater.
3
,
703
(
2004
).
27.
K.
Yusu
,
S.
Ashida
,
N.
Naomasa
,
N.
Oomachi
,
N.
Moroshita
,
A.
Ogawa
, and
K.
Ichihara
,
Tech. Dig. Int. Symp.
Optical Memory/Optical Data Storage
2002
,
413
(
2002
).
28.
R.
Kojima
and
N.
Yamada
,
Jpn. J. Appl. Phys., Part 1
40
,
5930
(
2001
).
29.
T.
Matsunaga
and
N.
Yamada
,
Jpn. J. Appl. Phys., Part 1
43
,
4704
(
2004
).
30.
R. T.
Savalia
,
K. N.
Lad
,
A.
Pratap
,
G. K.
Dey
, and
S.
Banerjee
,
J. Therm Anal. Calorim.
78
,
745
(
2004
).
You do not currently have access to this content.