Spin-disorder resistivity of Fe and Ni is studied using the noncollinear density functional theory. The Landauer conductance is averaged over random disorder configurations and fitted to Ohm’s law. The distribution function is approximated by the mean-field theory. The dependence of spin-disorder resistivity on magnetization in Fe is found to be in excellent agreement with the results for the isotropic model. In the fully disordered state, spin-disorder resistivity for Fe is close to experiment, while for fcc Ni it exceeds the experimental value by a factor of 2.3. This result indicates strong magnetic short-range order in Ni at the Curie temperature.
REFERENCES
1.
B. R.
Coles
, Adv. Phys.
7
, 40
(1958
).2.
R. J.
Weiss
and A. S.
Marotta
, J. Phys. Chem. Solids
9
, 302
(1959
).3.
P. G.
de Gennes
and J.
Friedel
, J. Phys. Chem. Solids
4
, 71
(1958
).4.
I.
Mannari
, Prog. Theor. Phys.
26
, 51
(1961
).5.
6.
T.
Kasuya
, Prog. Theor. Phys.
16
, 58
(1956
).7.
8.
V. P.
Antropov
, Phys. Rev. B
72
, 140406
(2005
).9.
D. A.
Goodings
, Phys. Rev.
132
, 542
(1963
).10.
B. L.
Gyorffy
, A. J.
Pindor
, J.
Staunton
, G. M.
Stocks
, and H.
Winter
, J. Phys. F: Met. Phys.
15
, 1337
(1985
).11.
V. P.
Antropov
, M. I.
Katsnelson
, B. N.
Harmon
, M.
van Schilfgaarde
, and D.
Kuznezov
, Phys. Rev. B
54
, 1019
(1996
).12.
I.
Turek
, V.
Drchal
, J.
Kudrnovský
, M.
Šob
, and P.
Weinberger
, Electronic Structure of Disordered Alloys, Surfaces and Interfaces
(Kluwer
, Boston
, 1997
).13.
J.
Kudrnovský
, V.
Drchal
, C.
Blaas
, P.
Weinberger
, I.
Turek
, and P.
Bruno
, Phys. Rev. B
62, 15084
(2000
).14.
© 2007 American Institute of Physics.
2007
American Institute of Physics
You do not currently have access to this content.