We analyze transport in metallic single-wall carbon nanotubes (SWCNTs) on insulating substrates over the bias range up to electrical breakdown in air. To account for Joule self-heating, a temperature-dependent Landauer model for electrical transport is coupled with the heat conduction equation along the nanotube. The electrical breakdown voltage of SWCNTs in air is found to scale linearly with their length, approximately as 5Vμm; we use this to deduce a thermal conductance between SWCNT and substrate g0.17±0.03WK1m1 per tube length, which appears limited by the SWCNT-substrate interface rather than the thermal properties of the substrate itself. We examine the phonon scattering mechanisms that limit electron transport, and find the strong temperature dependence of the optical phonon absorption rate to have a remarkable influence on the electrical resistance of micron-length nanotubes. Further analysis reveals that unlike in typical metals, electrons are responsible for less than 15% of the total thermal conductivity of metallic nanotubes around room temperature, and this contribution decreases at high bias or higher temperatures. For interconnect applications of metallic SWCNTs, significant self-heating may be avoided if power densities are limited below 5μWμm, or if the SWCNT-surrounding thermal interface is optimized.

1.
P. L.
McEuen
,
M. S.
Fuhrer
, and
H.
Park
,
IEEE Trans. Nanotechnol.
1
,
78
(
2002
).
2.
P.
Avouris
,
J.
Appenzeller
,
R.
Martel
, and
S. J.
Wind
,
Proc. IEEE
91
,
1772
(
2003
).
3.
M. S.
Dresselhaus
and
P. C.
Eklund
,
Adv. Phys.
49
,
705
(
2000
).
4.
A.
Javey
,
J.
Guo
,
D. B.
Farmer
,
Q.
Wang
,
D.
Wang
,
R. G.
Gordon
,
M.
Lundstrom
, and
H. J.
Dai
,
Nano Lett.
4
,
447
(
2004
).
5.
F.
Kreupl
,
A. P.
Graham
,
M.
Liebau
,
G. S.
Duesberg
,
R.
Seidel
, and
E.
Unger
, in
IEEE International Electron Devices Meeting (IEDM), San Francisco, CA
(
IEEE
,
New York
,
2004
), pp.
683
686
.
6.
P. J.
Burke
,
IEEE Trans. Nanotechnol.
2
,
55
(
2003
).
7.
A.
Naeemi
,
R.
Sarvari
, and
J. D.
Meindl
,
IEEE Electron Device Lett.
26
,
84
(
2005
).
8.
A.
Raychowdhury
and
K.
Roy
, in
International Conference on Computer Aided Design (ICCAD)
(
IEEE
,
New York
,
2004
), pp.
237
240
.
9.
N.
Srivastava
,
R. V.
Joshi
, and
K.
Banerjee
, in
IEEE International Electron Devices Meeting (IEDM), Washington, DC
(
IEEE
,
New York
,
2005
), pp.
257
260
.
10.
C.
Yu
,
L.
Shi
,
Z.
Yao
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
5
,
1842
(
2005
).
11.
E.
Pop
,
D.
Mann
,
Q.
Wang
,
K. E.
Goodson
, and
H. J.
Dai
,
Nano Lett.
6
,
96
(
2006
).
12.
E.
Pop
,
D.
Mann
,
J.
Cao
,
Q.
Wang
,
K. E.
Goodson
, and
H. J.
Dai
,
Phys. Rev. Lett.
95
,
155505
(
2005
).
13.
M. A.
Kuroda
,
A.
Cangellaris
, and
J.-P.
Leburton
,
Phys. Rev. Lett.
95
,
266803
(
2005
).
14.
A.
Javey
,
J.
Guo
,
M.
Paulsson
,
Q.
Wang
,
D.
Mann
,
M.
Lundstrom
, and
H. J.
Dai
,
Phys. Rev. Lett.
92
,
106804
(
2004
).
15.
J. Y.
Park
 et al,
Nano Lett.
4
,
517
(
2004
).
16.
Z.
Yao
,
C. L.
Kane
, and
C.
Dekker
,
Phys. Rev. Lett.
84
,
2941
(
2000
).
17.
J. P.
Small
,
L.
Shi
, and
P.
Kim
,
Solid State Commun.
127
,
181
(
2003
).
18.
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
T.
Namai
,
M.
Yumura
, and
S.
Iijima
,
Science
306
,
1362
(
2004
).
19.
I. W.
Chiang
,
B. E.
Brinson
,
A. Y.
Huang
,
P. A.
Willis
,
M. J.
Bronikowski
,
J. L.
Margrave
,
R. E.
Smalley
, and
R. H.
Hauge
,
J. Phys. Chem. B
105
,
8297
(
2001
).
20.
I. W.
Chiang
,
B. E.
Brinson
,
R. E.
Smalley
,
J. L.
Margrave
, and
R. H.
Hauge
,
J. Phys. Chem. B
105
,
1157
(
2001
).
21.
E.
Pop
,
D.
Mann
,
J.
Reifenberg
,
K. E.
Goodson
, and
H. J.
Dai
, in
IEEE International Electron Devices Meeting (IEDM), Washington, DC
(
IEEE
,
New York
,
2005
), pp.
253
256
.
22.
T.-Y.
Chiang
,
K.
Banerjee
, and
K. C.
Saraswat
,
IEEE Electron Device Lett.
23
,
31
(
2002
).
23.
P.
Qi
,
A.
Javey
,
M.
Rolandi
,
Q.
Wang
,
E.
Yenilmez
, and
H. J.
Dai
,
J. Am. Chem. Soc.
126
,
11774
(
2004
).
24.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
25.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
26.
H.-K.
Lyeo
and
D. G.
Cahill
,
Phys. Rev. B
73
,
144301
(
2006
).
27.
C.
Durkan
,
M. A.
Schneider
, and
M. E.
Welland
,
J. Appl. Phys.
86
,
1280
(
1999
).
28.
F. P.
Incropera
and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
, 5th ed. (
Wiley
,
New York
,
2001
).
29.
V.
Bahadur
,
J.
Xu
,
Y.
Liu
, and
T. S.
Fisher
,
J. Heat Transfer
127
,
664
(
2005
).
30.
31.
H.
Maune
,
H.-Y.
Chiu
, and
M.
Bockrath
,
Appl. Phys. Lett.
89
,
013109
(
2006
).
32.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge Univ. Press
,
Cambridge
,
1995
).
33.
M. P.
Das
and
F.
Green
,
J. Phys.: Condens. Matter
15
,
687
(
2003
).
34.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge Univ. Press
,
Cambridge
,
2000
).
35.
D. K.
Ferry
,
Semiconductor Transport
(
Taylor & Francis
,
London
,
2000
).
36.
S.
Hasan
,
J.
Guo
,
M.
Vaidyanathan
,
M. A.
Alam
, and
M.
Lundstrom
,
J. Comput. Electron.
3
,
333
(
2004
).
37.
P.
Moin
,
Fundamentals of Engineering Numerical Analysis
(
Cambridge Univ. Press
,
Cambridge
,
2001
).
38.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge Univ. Press
,
Cambridge
,
2005
).
39.
M.
Lazzeri
,
S.
Piscanec
,
F.
Mauri
,
A. C.
Ferrari
, and
J.
Robertson
,
Phys. Rev. Lett.
95
,
236802
(
2005
).
40.
D.
Mann
,
E.
Pop
,
J.
Cao
,
Q.
Wang
,
K. E.
Goodson
, and
H. J.
Dai
,
J. Phys. Chem. B
110
,
1502
(
2006
).
41.
J.
Appenzeller
,
J.
Knoch
,
M.
Radosavljevic
, and
P.
Avouris
,
Phys. Rev. Lett.
92
,
226802
(
2004
).
42.
J.
Jiang
,
R.
Saito
,
G. G.
Samsonidze
,
S. G.
Chou
,
A.
Jorio
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
72
,
235408
(
2005
).
43.
V.
Perebeinos
,
J.
Tersoff
, and
P.
Avouris
,
Phys. Rev. Lett.
94
,
086802
(
2005
).
44.
W.
Steinhogl
,
G.
Schindler
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
45.
C.
Kittel
,
Introduction to Solid-state Physics
, 7th ed. (
Wiley
,
New York
,
1995
).
46.
G. D.
Mahan
and
M.
Bartkowiak
,
Appl. Phys. Lett.
74
,
953
(
1999
).
47.
A.
Greiner
,
L.
Reggiani
,
T.
Kuhn
, and
L.
Varani
,
Phys. Rev. Lett.
78
,
1114
(
1997
).
48.
T.
Yamamoto
,
S.
Watanabe
, and
K.
Watanabe
,
Phys. Rev. Lett.
92
,
075502
(
2004
).
You do not currently have access to this content.