The damage kinetics induced by irradiation with a diversity of swift ions (O at 5MeV; F at 5.1MeV; Si at 5, 7.5, and 41MeV; and Cl at 11 and 46MeV) has been investigated in the range of 10121015at.cm2. It covers from the initial stage where single damage tracks are isolated and well separated, up to the stage where a full amorphous layer is produced. The damage is characterized by the areal fraction of disorder derived from the Rutherford backscattering∕channeling spectra. The data approximately fit an abrupt Avrami-type dependence with fluence. The fluence value at which 50% of the sample surface becomes disordered shows a clear increasing trend with the electronic stopping power of the ion. The trend is consistent with Monte Carlo simulations based on a recent model for defect creation. Moreover, the quantitative agreement for the defect generation rate appears also reasonable.

1.
Ion Implantation-2000 Science and Technology
, edited by
J. F.
Ziegler
(
Lattice
,
Sunset Beach, CA
,
2000
).
2.
P. D.
Townsend
,
P. J.
Chandler
, and
L.
Zhang
,
Optical Effects of Ion Implantation
(
Cambridge University Press
,
Cambridge
,
1994
).
3.
R.
Spohr
, in
Ion Tracks and Microtechnology: Basic Principles and Applications
, edited by
K.
Bethge
(
Vieweg
,
Braunchsweig
,
1990
).
4.
M.
Toulemonde
,
S.
Bouffard
, and
F.
Studer
,
Nucl. Instrum. Methods Phys. Res. B
91
,
108
(
1994
).
5.
B.
Canut
,
S. M. S.
Ramos
,
R.
Brenier
,
P.
Thevenard
,
L. J.
Loubet
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
107
,
194
(
1996
).
6.
S. M. S.
Ramos
,
B.
Canut
,
M.
Ambri
,
N.
Bonardi
,
M.
Pitaval
,
H.
Bernas
, and
J.
Chaumont
,
Radiat. Eff. Defects Solids
143
,
299
(
1998
).
7.
G.
Szenes
,
Phys. Rev. B
51
,
8026
(
1995
).
8.
M.
Toulemonde
,
C.
Trautmann
,
E.
Balanzat
,
K.
Hjort
, and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
216
,
1
(
2004
).
9.
A.
Meftah
,
F.
Brisard
,
J. M.
Constantini
,
M.
Hage-Ali
,
J. P.
Soquert
,
F.
Studer
, and
M.
Toulemonde
,
Phys. Rev. B
48
,
920
(
1993
).
10.
A.
Meftah
,
J. M.
Constantini
,
N.
Khalfaoui
,
S.
Boudjadar
,
J. P.
Soquert
,
F.
Studer
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
237
,
563
(
2005
).
11.
G. G.
Bentini
 et al,
J. Appl. Phys.
92
,
6477
(
2002
).
12.
G. G.
Bentini
 et al,
J. Appl. Phys.
96
,
242
(
2004
).
13.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
J. C.
Soares
, and
A.
Kling
,
Nucl. Instrum. Methods Phys. Res. B
242
,
534
(
2005
).
14.
M.
Bianconi
 et al,
Appl. Phys. Lett.
87
,
072901
(
2005
).
15.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
A.
Kling
, and
J. C.
Soares
,
Appl. Phys. A: Mater. Sci. Process.
81
,
1465
(
2005
).
16.
J.
Olivares
,
G.
García
,
A.
García-Navarro
,
F.
Agulló-López
,
O.
Caballero
, and
A.
García-Cabañes
,
Appl. Phys. Lett.
86
,
183501
(
2005
).
17.
F.
Agulló-López
,
G.
García
, and
J.
Olivares
,
J. Appl. Phys.
97
,
093514
(
2005
).
18.
G.
García
,
F.
Agulló-López
,
J.
Olivares
, and
A.
García-Navarro
,
J. Appl. Phys.
99
,
1
(
2006
).
19.
Properties of Lithium Niobate
,
EMIS Datareview Series
, edited by
K. K.
Wong
(
INSPEC
,
Exeter
,
2002
).
20.
F.
Agulló-López
,
J. M.
Cabrera
, and
F.
Agulló-Rueda
,
Electrooptics: Phenomena, Materials and Applications
(
Academic
,
London
,
1994
).
21.
M.
Bianconi
,
E.
Albertazzi
,
S.
Balboni
,
L.
Colombo
,
G.
Lulli
, and
A.
Satta
,
Nucl. Instrum. Methods Phys. Res. B
230
,
185
(
2005
).
22.
The Stopping and Ranges of Ions in Solids
, edited by
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
(
Pergamon
,
New York
,
1985
);
see also the SRIM web page http://www.srim.org
23.
E.
Albertazzi
,
M.
Bianconi
,
G.
Lulli
,
R.
Nipoti
, and
M.
Cantiano
,
Nucl. Instrum. Methods Phys. Res. B
118
,
128
(
1996
).
You do not currently have access to this content.