We studied theoretically the influence of the progressive strain relaxation and the depolarizing-field effect on the thickness dependence of the out-of-plane dielectric response of epitaxial ferroelectric thin films sandwiched between extended metal electrodes. The calculations show that the inverse of the measured capacitance varies with the film thickness almost linearly in the most part of the thickness range at the majority of temperatures. Extrapolation of this linear dependence to zero thickness usually gives considerable nonzero intercept even in the absence of nonferroelectric interfacial layers. Remarkably, such apparent “interfacial capacitance” in a certain temperature range becomes negative. The physical meaning of the effective dielectric constant, which can be extracted from the slope of the reciprocal capacitance thickness dependence, is also analyzed. The theoretical predictions are compared with the experimental data obtained for single-crystalline SrRuO3Ba0.7Sr0.3TiO3SrRuO3 and PtBa0.7Sr0.3TiO3SrRuO3 thin-film capacitors.

1.
C.
Basceri
,
S. K.
Streiffer
,
A. I.
Kingon
, and
R.
Waser
,
J. Appl. Phys.
82
,
2497
(
1997
).
2.
S. K.
Streiffer
,
C.
Basceri
,
C. B.
Parker
,
S. E.
Lash
, and
A.
Kingon
,
J. Appl. Phys.
86
,
4565
(
1999
).
3.
N.
Yanase
,
K.
Abe
,
N.
Fukushima
, and
T.
Kawakubo
,
Jpn. J. Appl. Phys., Part 1
38
,
5305
(
1999
).
4.
D. J.
Kim
,
J. Y.
Jo
,
Y. S.
Kim
,
Y. J.
Chang
,
J. S.
Lee
,
J. -G.
Yoon
,
T. K.
Song
, and
T. W.
Noh
,
Phys. Rev. Lett.
95
,
237602
(
2005
).
5.
A. K.
Tagantsev
,
M.
Landivar
,
E.
Colla
, and
N.
Setter
,
J. Appl. Phys.
78
,
2623
(
1995
).
6.
N. A.
Pertsev
,
J.
Rodríguez Contreras
,
V. G.
Kukhar
,
B.
Hermanns
,
H.
Kohlstedt
, and
R.
Waser
,
Appl. Phys. Lett.
83
,
3356
(
2003
).
7.
G. A.
Smolenski
, and
K. S.
Rogatschev
,
Zh. Tekh. Fiz.
27
,
1753
(
1954
);
A. D.
Hilton
and
B. W.
Ricketts
,
J. Phys. D
29
,
1321
(
1996
).
8.
D. E.
Kotecki
 et al.,
IBM J. Res. Dev.
43
,
367
(
1999
).
9.
P. K.
Larsen
,
J. M.
Dormans
,
D. J.
Taylor
, and
P. J.
van Veldhoven
,
J. Appl. Phys.
76
,
2405
(
1994
).
10.
L. J.
Sinnamon
,
R. M.
Bowman
, and
J. M.
Gregg
,
Appl. Phys. Lett.
78
,
1724
(
2001
).
11.
C. B.
Parker
,
J. -P.
Maria
, and
A. I.
Kingon
,
Appl. Phys. Lett.
81
,
340
(
2002
).
12.
J.
McAneney
,
L. J.
Sinnamon
,
R. M.
Bowman
, and
J. M.
Gregg
,
J. Appl. Phys.
94
,
4566
(
2003
).
13.
W. Y.
Park
,
K. H.
Ahn
, and
C. S.
Hwang
,
Appl. Phys. Lett.
83
,
4387
(
2003
).
14.
R.
Dittmann
,
R.
Plonka
,
E.
Vasco
,
N. A.
Pertsev
,
J. Q.
He
,
C. L.
Jia
,
S.
Hoffmann-Eifert
, and
R.
Waser
,
Appl. Phys. Lett.
83
,
5011
(
2003
).
15.
R.
Plonka
,
R.
Dittmann
,
N. A.
Pertsev
,
E.
Vasco
, and
R.
Waser
,
Appl. Phys. Lett.
86
,
202908
(
2005
).
16.
R.
Kretschmer
and
K.
Binder
,
Phys. Rev. B
20
,
1065
(
1979
).
17.
W. L.
Zhong
,
B. D.
Qu
,
P. L.
Zhang
, and
Y. G.
Wang
,
Phys. Rev. B
50
,
12375
(
1994
).
18.
C.
Zhou
and
D. M.
Newns
,
J. Appl. Phys.
82
,
3081
(
1997
).
19.
H. Y.
Ku
and
F. G.
Ullman
,
J. Appl. Phys.
35
,
265
(
1964
).
20.
C. T.
Black
and
J. J.
Welser
,
IEEE Trans. Electron Devices
46
,
776
(
1999
).
21.
J.
Junquera
and
Ph.
Ghosez
,
Nature (London)
422
,
506
(
2003
);
N.
Sai
,
A. M.
Kolpak
, and
A. M.
Rappe
,
Phys. Rev. B
72
,
020101
(R) (
2005
).
22.
L. J.
Sinnamon
,
R. M.
Bowman
, and
J. M.
Gregg
,
Appl. Phys. Lett.
81
,
889
(
2002
).
23.
A.
Lookman
,
R. M.
Bowman
,
J. M.
Gregg
,
J.
Kut
,
M.
Dawber
,
A.
Ruediger
, and
J. F.
Scott
,
J. Appl. Phys.
96
,
555
(
2004
).
24.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
);
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Ferroelectrics
223
,
79
(
1999
).
25.
J.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
26.
J. S.
Speck
and
W.
Pompe
,
J. Appl. Phys.
76
,
466
(
1994
).
27.
I. P.
Batra
,
P.
Würfel
, and
B. D.
Silverman
,
Phys. Rev. Lett.
30
,
384
(
1973
);
I. P.
Batra
,
P.
Würfel
, and
B. D.
Silverman
,
Phys. Rev. B
8
,
3257
(
1973
);
I. P.
Batra
,
P.
Würfel
, and
B. D.
Silverman
,
J. Vac. Sci. Technol.
10
,
687
(
1973
).
28.
V. G.
Koukhar
,
N. A.
Pertsev
, and
R.
Waser
,
Phys. Rev. B
64
,
214103
(
2001
).
29.
N. A.
Pertsev
,
V. G.
Koukhar
,
R.
Waser
, and
S.
Hoffmann
,
Appl. Phys. Lett.
77
,
2596
(
2000
).
30.
V. G.
Kukhar
,
N. A.
Pertsev
,
H.
Kohlstedt
, and
R.
Waser
,
Phys. Rev. B
73
,
214103
(
2006
).
31.
R. R.
Mehta
,
B. D.
Silverman
, and
J. T.
Jacobs
,
J. Appl. Phys.
44
,
3379
(
1973
).
32.
These values of d and εd follow from the charge and electric-field distributions inside metallic electrodes calculated in the Thomas–Fermi approximation (see, e.g., Ref. 20).
33.
T.
Mitsui
and
J.
Furuichi
,
Phys. Rev.
90
,
193
(
1953
).
34.
A. M.
Bratkovsky
and
A. P.
Levanyuk
,
Phys. Rev. Lett.
84
,
3177
(
2000
).
35.
N. A.
Pertsev
and
H.
Kohlstedt
, cond-mat/0603762.
36.
D. D.
Fong
 et al.,
Phys. Rev. B
71
,
144112
(
2005
).
37.
D. D.
Fong
 et al.,
Phys. Rev. Lett.
96
,
127601
(
2006
).
38.
N. A.
Pertsev
,
V. G.
Kukhar
,
H.
Kohlstedt
, and
R.
Waser
,
Phys. Rev. B
67
,
054107
(
2003
).
39.
Numerical calculations for Pb(Zr0.5Ti0.5)O3 films were performed using the P6 approximation and the same set of material parameters as in Ref. 38.
40.
P.
Mokrý
,
A. K.
Tagantsev
, and
N.
Setter
,
Phys. Rev. B
70
,
172107
(
2004
).
41.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
,
J. Appl. Phys.
98
,
064101
(
2005
).
42.
For BaTiO3 films, the dielectric stiffness and higher-order stiffness coefficients taken from Ref. 41 and the electrostrictive and elastic constants listed in Ref. 28 were used in the numerical calculations. The interfacial capacitance was assumed to be ci=1Fm2, as expected for electrodes with very good screening properties.
43.
The effects caused by field-induced displacements of 180° domain walls, which were described in Ref. 40, are expected to be negligible due to high lattice potential barriers in the discussed perovskite ferroelectrics (see Ref. 30).
44.
E. V.
Chenskiĭ
and
V. V.
Tarasenko
,
Sov. Phys. JETP
56
,
618
(
1982
).
45.
C.
Yoshida
,
A.
Yoshida
, and
H.
Tamura
,
Appl. Phys. Lett.
75
,
1449
(
1999
).
46.
H. B.
Michaelson
,
IBM J. Res. Dev.
22
,
72
(
1978
).
47.
These values of ci follow from the capacitance densities cPt0.4Fm2 and cSRO0.9Fm2 of the Pt and SrRuO3 electrodes, which can be obtained using the data given in Refs. 4 and 20.
48.
G. M.
Guro
,
I. I.
Ivanchik
, and
N. F.
Kovtonyuk
,
Sov. Phys. Solid State
11
,
1574
(
1970
).
49.
L.
Pintilie
and
M.
Alexe
,
J. Appl. Phys.
98
,
124103
(
2005
).
50.
A. K.
Tagantsev
,
V. O.
Sherman
,
K. F.
Astafiev
,
J.
Venkatesh
, and
N.
Setter
,
J. Electroceram.
11
,
5
(
2003
).
H. -M.
Christen
,
J.
Mannhart
,
E. J.
Williams
, and
Ch.
Gerber
,
Phys. Rev. B
49
,
12095
(
1994
);
Yu. A.
Boikov
and
T.
Claeson
,
Phys. Solid State
43
,
2267
(
2001
).
52.
Y. S.
Kim
 et al.,
Appl. Phys. Lett.
88
,
072909
(
2006
).
You do not currently have access to this content.