The effects of thermal annealing for In0.25Ga0.75As1yNyGaAs multiquantum wells (MQWs) have been investigated through thermally detected optical absorption. The QW transition energies have been calculated by using a ten-band kp model including the band anticrossing model for the description of the InGaAsN band gap variation. The modification of the In concentration profile due to In-Ga interdiffusion during thermal annealing is taken into account through the Fick law. A good agreement is obtained between calculated and experimental energies of optical transitions. Our results show that the In-Ga interdiffusion phenomenon observed in a nitrogen free sample is moderately enhanced by the introduction of nitrogen. The blueshift of optical transitions induced by the annealing process is the result of both In-Ga interdiffusion and rearrangement of local nitrogen environment.

1.
M. C.
Larson
,
M.
Kondow
,
T.
Kitani
,
K.
Nakahara
,
K.
Tamura
,
H.
Inoue
, and
K.
Uomi
,
IEEE Photon. Technol. Lett.
10
,
188
(
1998
).
2.
M.
Kondow
,
K.
Uomi
,
A.
Niwa
,
T.
Kitatani
,
S.
Watahiki
, and
Y.
Yazawa
,
Jpn. J. Appl. Phys., Part 1
35
,
1273
(
1996
).
3.
K.
Kim
and
A.
Zunger
,
Phys. Rev. Lett.
86
,
2609
(
2001
).
4.
Y. N.
Qiu
,
J. M.
Rorison
,
H. D.
Sun
,
S.
Calvez
,
M. D.
Dawson
, and
A. C.
Bryce
,
Appl. Phys. Lett.
87
,
231112
(
2005
).
5.
H. F.
Liu
,
V.
Dixit
, and
N.
Xiang
,
J. Appl. Phys.
99
,
013503
(
2006
).
6.
A. M.
Vasson
,
A.
Vasson
,
J.
Leymarie
,
P.
Disseix
,
P.
Boring
, and
B.
Gil
,
Semicond. Sci. Technol.
8
,
303
(
1993
).
7.
P.
Disseix
,
J.
Leymarie
,
A.
Vasson
,
A. -M.
Vasson
,
C.
Monier
,
N.
Grandjean
,
M.
Leroux
, and
J.
Massies
,
Phys. Rev. B
55
,
2406
(
1997
).
8.
T.
Bouragba
,
M.
Mihailovic
,
H.
Carrère
,
P.
Disseix
,
A.
Vasson
,
J.
Leymarie
,
E.
Bedel
,
A.
Arnoult
, and
C.
Fontaine
,
IEE Proc.: Optoelectron.
151
,
309
(
2004
).
9.
E. M.
Pavelescu
,
T.
Jouhti
,
M.
Dumitrescu
,
P. J.
Klar
,
S.
Karirinne
,
Y.
Fedorenko
, and
M.
Pessa
,
Appl. Phys. Lett.
83
,
1497
(
2003
).
10.
J. S.
Blakemore
,
J. Appl. Phys.
53
,
R123
(
1982
).
11.
D. W.
Jenkins
,
J. Appl. Phys.
68
,
1848
(
1990
).
12.
J.
Leymarie
,
C.
Monier
,
A.
Vasson
,
A. -M.
Vasson
,
M.
Leroux
,
B.
Courboules
,
N.
Grandjean
,
C.
Deparis
, and
J.
Massies
,
Phys. Rev. B
51
,
13274
(
1995
).
13.
W.
Shan
,
W.
Walukiewiecz
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
,
J. M.
Olson
, and
S. R.
Kurtz
,
Phys. Rev. Lett.
82
,
1221
(
1999
).
14.
W. P.
Gillin
and
D. J.
Dunstan
,
Phys. Rev. B
50
,
7495
(
1994
).
15.
C. S.
Peng
,
H. F.
Liu
,
J.
Konttinen
, and
M.
Pessa
,
J. Cryst. Growth
278
,
259
(
2005
).
16.
T. K.
Ng
,
H. S.
Djie
,
S. F.
Yoon
, and
T.
Mei
,
J. Appl. Phys.
97
,
013506
(
2005
).
17.
G.
Mussler
,
L.
Däweritz
, and
K. H.
Ploog
,
Appl. Phys. Lett.
87
,
081903
(
2005
).
18.
H. F.
Liu
and
N.
Xiang
,
J. Appl. Phys.
99
,
053508
(
2006
).
19.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
20.
J. Y.
Duboz
,
J. A.
Gupta
,
Z. R.
Wasilewski
,
J.
Ramsey
,
R. L.
Williams
,
G. C.
Aers
,
B. J.
Riel
, and
G. I.
Sproule
,
Phys. Rev. B
66
,
085313
(
2002
).
You do not currently have access to this content.