Very thin Au layers were deposited on SiC hexagonal and SiO2 substrates by sputtering. The Au surface diffusion, clustering, and self-organization of Au nanoclusters on these substrates, induced by thermal processes, were investigated by Rutherford backscattering spectrometry, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. On both types of substrates, clustering is shown to be a ripening process of three-dimensional structures controlled by surface diffusion and the application of the ripening theory allowed us to derive the surface diffusion coefficient and all other parameters necessary to describe the entire process. The system Au nanoclusters/SiC and Au nanoclusters/SiO2 are proposed as nanostructured materials for nanoelectronic and nanotechnology applications.

1.
D.
Goldhaber-Gordon
,
M. S.
Montemerlo
,
J. C.
Love
,
G. J.
Opiteck
, and
J. C.
Ellenbogen
,
Proc. IEEE
85
,
521
(
1997
).
2.
P.
Moriarty
,
Rep. Prog. Phys.
64
,
297
(
2001
).
3.
D. K.
Ferry
and
S. M.
Goodnick
,
Transport in Nanostructures
(
Cambridge University Press
,
Cambridge
,
1997
).
4.
Nanoparticles
, edited by
G.
Schmid
(
Wiley-VCH
,
Weinheim
,
2004
).
5.
F.
Ruffino
,
F.
Giannazzo
,
F.
Roccaforte
,
V.
Raineri
, and
M. G.
Grimaldi
,
Appl. Phys. Lett.
89
,
243113
(
2006
).
6.
F.
Ruffino
,
F.
Giannazzo
,
F.
Roccaforte
,
V.
Raineri
, and
M. G.
Grimaldi
,
Appl. Phys. Lett.
89
,
263108
(
2006
).
7.
J.
Chen
,
T.
Lee
,
J.
Su
,
W.
Wang
, and
M. A.
Reed
, in
Encyclopedia of Nanoscience and Nanotechnology
, edited by
H. S.
Nalwa
(
American Scientific Publishers
,
Stevenson Ranch, CA
,
2004
), Vol.
X
, pp.
1
30
.
8.
S. R.
Wang
and
Z. L.
Liu
,
Curr. Appl. Phys.
2
,
393
(
2002
).
9.
T. P.
Chow
,
Microelectron. Eng.
83
,
112
(
2006
).
10.
A.
Cabrita
,
L.
Pereira
,
D.
Brida
,
A.
Lopes
,
A.
Marques
,
I.
Ferreira
,
E.
Fortunato
, and
R.
Martins
,
Appl. Surf. Sci.
184
,
437
(
2001
).
11.
L. A.
Kosyachenko
,
V. M.
Sklyarchuk
, and
Y. F.
Sklyarchuk
,
Solid-State Electron.
42
,
145
(
1998
).
12.
L. M.
Porter
and
R. F.
Davis
,
Mater. Sci. Eng., B
34
,
83
(
1995
).
13.
H.
Matsunami
,
Microelectron. Eng.
83
,
2
(
2006
).
14.
R. R.
Siergiej
, et al,
Mater. Sci. Eng., B
61–62
,
9
(
1999
).
15.
Z.
Wang
and
P.
Wynblatt
,
Surf. Sci.
398
,
259
(
1998
).
16.
D.
Barreca
,
A.
Gasparotto
,
E.
Tondello
,
G.
Bruno
, and
M.
Losurdo
,
J. Appl. Phys.
96
,
1655
(
2004
).
17.
I.
Beszeda
,
E. G.
Gontier-Moya
, and
Á. W.
Imre
,
Appl. Phys. A: Mater. Sci. Process.
81
,
673
(
2005
).
18.
A.
Baldan
,
J. Mater. Sci.
37
,
2171
(
2002
).
19.
W.
Ostwald
,
Z. Elektrochem. Angew. Phys. Chem.
37
,
385
(
1901
).
20.
I. M.
Lifshitz
and
V. V.
Slyozov
,
J. Phys. Chem. Solids
19
,
35
(
1961
).
21.
C.
Wagner
,
Z. Elektrochem.
65
,
581
(
1961
).
22.
B. K.
Chakraverty
,
J. Phys. Chem. Solids
28
,
2401
(
1967
).
23.
A. J.
Ardell
,
Acta Metall.
20
,
61
(
1972
).
24.
A. D.
Brailsford
and
P.
Wynblatt
,
Acta Metall.
27
,
489
(
1979
).
25.
K.
Tsumaraya
and
Y.
Miyata
,
Acta Metall.
31
,
437
(
1983
).
26.
J. A.
Marqusee
and
J.
Rose
,
J. Chem. Phys.
80
,
536
(
1984
).
27.
P. W.
Voorhees
,
Annu. Rev. Mater. Sci.
22
,
197
(
1992
).
28.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabov
,
Surf. Sci. Rep.
16
,
377
(
1992
).
29.
K.
Shorlin
,
S.
Krylov
, and
M.
Zinke-Allmang
,
Physica A
261
,
248
(
1998
).
30.
P.
Buffat
and
J. P.
Borel
,
Phys. Rev. A
13
,
2287
(
1976
).
31.
Á. W.
Imre
,
E. G.
Gontier-Moya
,
D. L.
Beke
,
I. A.
Szabo
, and
G.
Erdélyi
,
Surf. Sci.
441
,
133
(
1999
).
32.
K. N.
Tu
,
J. W.
Mayer
, and
L. C.
Feldman
,
Electronic Thin Film Science
(
Macmillan
,
New York
,
1992
).
You do not currently have access to this content.