The size effect in electroplated copper wires has been widely studied recently. However, there is no consensus on the role of various scattering mechanisms. Therefore, an in-depth analysis to reveal the origin of the size effect is needed. In this article, we study the resistivity of fine copper wires whose feature sizes shrink in two dimensions. It is shown that the residual resistivity (at 5 K) increases with decreasing wire width or height and the temperature-dependent resistivity slightly deviates from that of bulk copper. This is mainly attributed to surface scattering rather than grain boundary scattering. In fact, the influence of grain boundary scattering in these well annealed copper wires is relatively small. In addition, for copper wires with a constant height, a linear dependence of the copper resistivity on 1/width (w) or 1/cross-sectional area (A), namely ρ=ρic+c*w (or ρ=ρic+c**A), is derived from the classic surface and grain boundary scattering models and validated experimentally. In this simple description, the contributions of different scattering mechanisms, such as surface reflectivity, p, and grain boundary reflection coefficient, R, defect and impurity density, combine together in parameters of ρic and c* (or c**). Especially, c* is a good indicator of scattering strength, from which one can quantitatively analyze the impact of nonsurface scattering contribution with a reference slope of c*=32.14.

1.
K.
Fuchs
,
Proc. Cambridge Philos. Soc.
34
,
100
(
1938
).
2.
3.
A. F.
Mayadas
,
M.
Shatzkes
, and
J. F.
Janak
,
Appl. Phys. Lett.
14
,
345
(
1969
).
4.
W.
Steinhogl
,
G.
Schindler
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
5.
W.
Wu
,
S. H.
Brongersma
,
M.
Van Hove
, and
K.
Maex
,
Appl. Phys. Lett.
84
,
2838
(
2004
).
6.
W.
Steinhögl
,
G.
Schindler
,
G.
Steinlesberger
,
M.
Traving
, and
M.
Engelhardt
,
J. Appl. Phys.
97
,
023706
(
2005
).
7.
W.
Zhang
,
S. H.
Brongersma
,
T.
Conard
,
W.
Wu
,
M.
Van Hove
,
W.
Vandervorst
, and
K.
Maex
,
Electrochem. Solid-State Lett.
8
,
C95
(
2005
).
8.
P. M. Th. M.
van Attekum
,
P. H.
Woerlee
,
G. C.
Verkade
, and
A. A. M.
Hoeben
,
Phys. Rev. B
29
,
645
(
1984
).
9.
S.
Kim
,
H.
Suhl
, and
K.
Schuller
,
Phys. Rev. Lett.
78
,
322
(
1997
).
10.
H.
Li
,
S.
Jin
,
M.
Van Hove
,
L.
Froyen
, and
K.
Maex
, Conf. Proc. of AMC (
1998
), p.
197
.
11.
D.
Josell
 et al,
J. Appl. Phys.
96
,
759
(
2004
).
12.
J. F.
Guillaumond
,
L.
Aranaud
,
T.
Mourier
,
M.
Fayolle
,
O.
Pesci
, and
G.
Reimbold
,
Proc. of IITC
(
2003
), p.
132
.
13.
S. M.
Rossnagel
and
T. S.
Kuan
,
J. Vac. Sci. Technol. B
22
,
240
(
2004
).
14.
W.
Zhang
,
S. H.
Brongersma
,
T.
Clarysse
,
V.
Terzieva
,
E.
Rosseel
,
W.
Vandervorst
, and
K.
Maex
,
J. Vac. Sci. Technol. B
22
,
1830
(
2004
).
15.
H.
Marom
and
M.
Eizenberg
,
In situ characterization of interfaces induced resistivity in nanometric dimensions
, Mater. Res. Symp. Proc. 914, Warrendale, PA,
2006
.
16.
W.
Zhang
,
S. H.
Brongersma
,
N.
Heylen
,
G.
Beyer
,
W.
Vandervorst
, and
K.
Maex
,
J. Electrochem. Soc.
152
,
C832
(
2005
).
17.
G.
Schindler
,
M. A.
Meyer
,
G.
Steinlesberger
,
M.
Engelhardt
, and
E.
Zschech
,
Proc. AMC
(
2003
), p.
205
.
18.
C. -U.
Kim
,
J.
Park
,
N.
Michael
,
P.
Giliespie
, and
R.
Auger
,
J. Electron. Mater.
32
,
982
(
2003
).
19.
G.
Kästle
,
T.
Muller
,
H. -G.
Boyen
,
A.
Klimmer
, and
P.
Ziemann
,
J. Appl. Phys.
96
,
7272
(
2004
).
20.
T.
Suzuki
,
A.
Uedono
,
T.
Nakamura
,
Y.
Mizushima
,
H.
Kitada
, and
Y.
Koura
, Proc. IITC (
2004
), p.
87
.
21.
M.
Prutton
,
Surface Physics, 100
(
Clarendon
,
Oxford
,
1983
).
22.
Y.
Hanaoka
,
K.
Hinode
,
K.
Takeda
, and
D.
Kodama
,
Mater. Trans.
43
,
1621
(
2002
).
23.
W.
Zhang
 et al,
Proc. of AMC
(
2005
), p.
603
.
24.
J. -K.
Jung
,
N. -M.
Hwang
,
Y. -J.
Park
, and
Y. -C.
Joo
,
J. Electron. Mater.
34
,
559
(
2005
).
You do not currently have access to this content.