Mn-doped Ga2O3 thin film showing room temperature ferromagnetism has been grown on a sapphire (0001) plane by using a pulsed-laser deposition technique. The microstructure of the Mn-doped film is investigated in detail using selected-area electron diffraction, high-resolution transmission electron microscopy (HRTEM), x-ray energy-dispersive spectroscopy, and electron energy-loss spectroscopy, in comparison with an undoped film. Careful diffraction analysis with the [21¯1¯0]Al2O3 and [101¯0]Al2O3 zone axes of the substrates reveals that the Mn-doped film shows the γ-Ga2O3 phase with a defective spinel structure, while the undoped film shows the β-Ga2O3 phase. The orientation relationship between the film and substrate is determined by electron diffraction and HRTEM from the interface region to be (2¯01)β-Ga2O3(0001)Al2O3 and [102]β-Ga2O3[21¯1¯0]Al2O3 or [1¯02¯]β-Ga2O3[21¯1¯0]Al2O3 for the undoped film, and (111)γ-Ga2O3(0001)Al2O3 and [21¯1¯]γ-Ga2O3[21¯1¯0]Al2O3 or [2¯11]γ-Ga2O3[21¯1¯0]Al2O3 for the Mn-doped film. Mn ions are uniformly dissolved in the film with 7.8 cation % and no detectable precipitates are found. Mn-L2,3 energy-loss near-edge structure reveals that Mn ions take the valency of 2+, which is consistent with Mn-L2,3 near edge x-ray absorption results in our previous report.

1.
H.
Munekata
,
H.
Ohno
,
S.
von Molnar
,
A.
Segmüller
,
L. L.
Chang
, and
L.
Esaki
,
Phys. Rev. Lett.
63
,
1849
(
1989
).
2.
H.
Ohno
,
A.
Shen
,
F.
Matsukura
,
A.
Oiwa
,
A.
Endo
,
S.
Katsumoto
, and
Y.
Iye
,
Appl. Phys. Lett.
69
,
363
(
1996
).
3.
H.
Ohno
,
Science
281
,
951
(
1998
).
4.
B.
Beschoten
,
P. A.
Crowell
,
I.
Malajovich
,
D. D.
Awschalom
,
F.
Matsukura
,
A.
Shen
, and
H.
Ohno
,
Phys. Rev. Lett.
83
,
3073
(
1999
).
5.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
6.
Y.
Matsumoto
 et al,
Science
291
,
854
(
2001
).
7.
P.
Sharma
 et al,
Nat. Mater.
2
,
673
(
2003
).
8.
J.
Philip
 et al,
Nat. Mater.
5
,
298
(
2006
).
9.
J.
Okabayashi
 et al,
J. Appl. Phys.
95
,
3573
(
2004
).
10.
A. K.
Pradhan
 et al,
Appl. Phys. Lett.
86
,
152511
(
2005
).
11.
A.
Che Mofor
 et al,
Appl. Phys. Lett.
87
,
062501
(
2005
).
12.
S.
Sonoda
,
S.
Shimizu
,
T.
Sasaki
,
Y.
Yamamoto
, and
H.
Hori
,
J. Cryst. Growth
237–239
,
1358
(
2002
).
13.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
,
J. Am. Chem. Soc.
74
,
719
(
1952
).
14.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
15.
M.
Zinkevich
,
F. M.
Morales
,
H.
Nitsche
,
M.
Ahrens
,
M.
Ruhle
, and
F.
Aldinger
,
Z. Metallkd.
95
,
756
(
2004
).
16.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
77
,
4166
(
2000
).
17.
M.
Orita
,
H.
Hiramatsu
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Thin Solid Films
411
,
134
(
2002
).
18.
K.
Matsuzaki
,
H.
Hiramatsu
,
K.
Nomura
,
H.
Yanagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Thin Solid Films
496
,
37
(
2006
).
19.
H. W.
Kim
and
N. H.
Kim
,
Mater. Sci. Eng., B
110
,
34
(
2004
).
20.
T.
Minami
,
Solid-State Electron.
47
,
2237
(
2003
).
21.
H.
Hayashi
,
R.
Huang
,
H.
Ikeno
,
F.
Oba
,
S.
Yoshioka
,
I.
Tanaka
, and
S.
Sonoda
,
Appl. Phys. Lett.
89
,
181903
(
2006
).
22.
M. F.
Chi
,
H.
Gu
,
X.
Wang
, and
P. L.
Wang
,
J. Am. Ceram. Soc.
86
,
1953
(
2003
).
23.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microcopy, IV
(
Plenum
,
New York
,
1996
), p.
600
.
24.
S.
Sonoda
 et al,
J. Phys.: Condens. Matter
18
,
4615
(
2006
).
25.
I.
Tanaka
,
T.
Mizoguchi
, and
T.
Yamamoto
,
J. Am. Ceram. Soc.
88
,
2013
(
2005
).
26.
B.
Gilbert
 et al,
J. Phys. Chem. A
107
,
2839
(
2003
).
You do not currently have access to this content.