In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy103, 17 (2005); Silvis-Cividjian, Ph.D. thesis,

University of Delft
, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.

1.
K.
Mitsuishi
,
Z. Q.
Liu
,
M.
Shimojo
,
M.
Han
, and
K.
Furuya
,
Ultramicroscopy
103
,
17
(
2005
).
2.
N.
Silvis-Cividjian
, Ph.D. thesis,
University of Delft
,
2002
.
3.
K.
Ueda
and
M.
Yoshimura
,
Thin Solid Films
464-465
,
331
(
2004
).
4.
N.
Silvis-Cividjian
,
C. W.
Hagen
, and
P.
Kruit
,
J. Appl. Phys.
98
,
084905
(
2005
).
5.
J. D.
Fowlkes
,
S. J.
Randolph
, and
P. D.
Rack
,
J. Vac. Sci. Technol. B
23
,
2825
(
2005
).
6.
K.
Muller
,
Optik (Jena)
33
,
296
(
1971
).
7.
L.
Reimer
and
M.
Wachter
,
Ultramicroscopy
3
,
169
(
1978
).
8.
M.
Amman
,
J.
Sleight
,
D. R.
Lombardi
,
R. E.
Welser
,
M. R.
Deshpande
,
M. A.
Reed
, and
L. J.
Guido
,
J. Vac. Sci. Technol. B
14
,
54
(
1995
).
9.
R. A.
Neureuther
,
F. D.
Kyser
, and
H. C.
Ting
,
IEEE Trans. Electron Devices
26
,
686
(
1979
).
10.
D. C.
Joy
,
Monte Carlo Modeling for Electron Microscopy and Microanalysis
(
Oxford University Press
,
New York
,
1995
).
11.
H. W.
Press
,
S. A.
Teuklosky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipies in C
(
Cambridge University Press
,
New York
,
1992
).
12.
D. A.
Alman
,
D. N.
Ruzic
, and
J. N.
Brooks
,
Phys. Plasmas
7
,
1421
(
2000
).
13.
P. A.
Taylor
,
R. M.
Wallace
,
C. C.
Cheng
,
W. H.
Weinberg
,
M. J.
Dresser
,
W. J.
Choyke
, and
J. T.
Yates
,
J. Am. Chem. Soc.
114
,
6754
(
1992
).
14.
Y.
Lin
and
D. C.
Joy
,
Surf. Interface Anal.
37
,
895
(
2005
).
15.
C.
Phillips
,
M.
Jakusch
,
H.
Steiner
,
B.
Mizaikoff
, and
A. G.
Fedorov
,
Anal. Chem.
75
,
1106
(
2003
).
16.
M.
Dapor
,
Electron-Beam Interactions With Solids: Application of the Monte Carlo Method to Electron Scattering Problems
(
Springer
,
Berlin
,
2003
).
17.
M. P.
Seah
and
W. A.
Dench
,
Surf. Interface Anal.
1
,
2
(
1978
).
18.
L.
Suichu
,
Z.
Yongsheng
, and
W.
Ziqin
,
J. Microsc.
148
,
289
(
1987
).
19.
Technical Communication with FEI, Inc.
, the manufacturer of Quanta 200 ESEM.
You do not currently have access to this content.