Based on an effective propagation constant and a frequency-dependent dielectric constant, the plane wave method is extended to calculate the complex photonic band diagram and the density of states for electromagnetic waves propagating in a two-dimensional finite structure with nonoverlapping dielectric cylinders of arbitrary radii, which may be randomly embedded in a dielectric matrix. The effective propagation constant is obtained by using the Twersky formula [J. Math. Phys.3, 700 (1962)] and the scattering matrix method. A case study shows that an embedded defect with optimal radius in a finite photonic crystal can increase the first photonic band gap as compared to the similar structure without the defect. This work is expected to provide a useful tool in determining the photonic properties of a disorder dielectric medium with arbitrary embedded nanoparticles and nanowires.

1.
J. D.
Joannopoulos
,
R. D.
Meade
, and
J. N.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton University Press
,
Princeton, NJ
,
1995
).
2.
M.
Plihal
and
A. A.
Maradudin
,
Phys. Rev. B
44
,
8565
(
1991
).
3.
A.
Mekis
,
J. C.
Chen
,
I.
Kurland
,
S.
Fan
,
P. R.
Villeneuve
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
77
,
3787
(
1996
).
4.
N.
Garcia
,
E. V.
Ponizovskaya
,
H.
Zhu
,
J. Q.
Xiao
, and
P.
Pons
,
Appl. Phys. Lett.
82
,
3147
(
2003
).
5.
D.
Felbacq
,
G.
Tayeb
, and
D.
Maystre
,
J. Opt. Soc. Am. A
11
,
2526
(
1994
).
6.
G.
Tayeb
and
D.
Maystre
,
J. Opt. Soc. Am. A
14
,
3323
(
1997
).
7.
W. M.
Robertson
,
G.
Arjavalingam
,
R. D.
Meade
,
K. D.
Brommer
,
A. M.
Rappe
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
68
,
2023
(
1992
).
8.
Z.-Y.
Li
and
L.-L.
Lin
,
Phys. Rev. E
67
,
046607
(
2003
).
9.
G.
D’Aguanno
,
N.
Mattiucci
,
M.
Centini
,
M.
Scalora
, and
M. J.
Bloemer
,
Phys. Rev. E
69
,
057601
(
2004
).
10.
R. C.
McPhedran
,
L. C.
Botten
,
J.
McOrist
,
A. A.
Asatryan
, and
C. M.
de Sterke
,
Phys. Rev. E
69
,
016609
(
2004
).
11.
D.
Felbacq
and
R.
Smaâli
,
Phys. Rev. B
67
,
085105
(
2003
).
12.
L.
Tsang
and
J. A.
Kong
,
Scattering of Electromagnetic Waves: Advanced Topics
(
Wiley
,
New York
,
2001
).
13.
A.
Isbimaru
,
Wave Propagation and Scattering in Random Media
(
IEEE
,
New York
,
1997
).
14.
16.
V.
Twersky
,
J. Math. Phys.
3
,
700
(
1962
).
17.
J.
Yonekura
,
M.
Ikeda
, and
T.
Baba
,
J. Lightwave Technol.
17
,
1500
(
1999
).
18.
M.
Abramovitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
).
19.
Z.-Y.
Li
,
X.
Zhang
, and
Z.-Q.
Zhang
,
Phys. Rev. B
61
,
15738
(
2000
).
20.
H.-Y.
Ryu
,
J.-K.
Hwang
, and
Y.-H.
Lee
,
Phys. Rev. B
59
,
5463
(
1999
).
21.
S.
Shi
,
C.
Chen
, and
D. W.
Prather
,
Appl. Phys. Lett.
86
,
043104
(
2005
).
22.
M.
Qiu
and
S.
He
,
Phys. Rev. B
60
,
10610
(
1999
).
23.
E.
Centeno
and
D.
Felbacq
,
J. Opt. Soc. Am. A
16
,
2705
(
1999
).
24.
N.
Garcia
,
E. V.
Ponizovskaya
, and
J. Q.
Xiao
,
Appl. Phys. Lett.
80
,
1120
(
2002
).
25.
Z. X.
Wang
, and
D. R.
Guo
,
Special Functions
(
World Scientific
,
Singapore
,
1989
).
You do not currently have access to this content.