We report an unusual case of spectral filtering by a silica waveguide containing Si nanocrystals (Si-nc’s) deposited on a silica plate. For a number of Si-rich silica (SiOx) slab waveguides annealed at 1100°C, the TE and TM waveguide mode cutoff positions are found in the inversed order with respect to the classical waveguide theory for an isotropic material. Using the cutoff and m-line spectra, this unusual behavior was explained assuming an optical birefringence of the material. For the highest Si content (x1.5), we estimated a maximal positive birefringence of 8%. The cutoff spectrum simulated with the optical parameters extracted from the m-line measurements corresponds well to the cutoff spectrum directly obtained by measuring waveguided luminescence. This agreement shows that the spectral filtering effect of silica layers containing Si-nc can be described within the quantitative model of delocalized waveguide modes. The possible origin for the observed birefringence is discussed.

1.
A. G.
Cullis
,
L. T.
Canham
, and
P. D. J.
Calcot
,
J. Appl. Phys.
82
,
909
(
1997
).
2.
L.
Pavesi
,
J. Phys.: Condens. Matter
15
,
R1169
(
2003
).
3.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzo
, and
F.
Priolo
,
Nature (London)
408
,
440
(
2000
).
4.
L.
Khriachtchev
,
M.
Räsänen
,
S.
Novikov
, and
J.
Sinkkonen
,
Appl. Phys. Lett.
79
,
1249
(
2001
).
5.
J.
Ruan
,
P. M.
Fauchet
,
L.
Dal Negro
,
M.
Cazzanelli
, and
L.
Pavesi
,
Appl. Phys. Lett.
83
,
5479
(
2003
).
6.
M.
Rückschloss
,
B.
Landkammer
, and
S.
Veprek
,
Appl. Phys. Lett.
63
,
1474
(
1993
).
7.
M. V.
Wolkin
,
J.
Jorne
,
P. M.
Fauchet
,
G.
Allan
, and
C.
Delerue
,
Phys. Rev. Lett.
82
,
197
(
1999
).
8.
B. T.
Sullivan
,
D. J.
Lockwood
,
H. J.
Labbe
, and
Z.-H.
Lu
,
Appl. Phys. Lett.
69
,
3149
(
1996
).
9.
F.
Iacona
,
G.
Franzo
, and
C.
Spinella
,
J. Appl. Phys.
87
,
1295
(
2000
).
10.
L.
Khriachtchev
,
S.
Novikov
, and
J.
Lahtinen
,
J. Appl. Phys.
92
,
5856
(
2002
).
11.
L.
Khriachtchev
,
M.
Räsänen
,
S.
Novikov
, and
L.
Pavesi
,
Appl. Phys. Lett.
85
,
1511
(
2004
).
12.
L.
Khriachtchev
,
M.
Räsänen
, and
S.
Novikov
,
Appl. Phys. Lett.
86
,
141911
(
2005
).
13.
L.
Khriachtchev
,
M.
Räsänen
, and
S.
Novikov
,
Appl. Phys. Lett.
88
,
013102
(
2006
).
14.
L.
Khriachtchev
,
M.
Räsänen
, and
S.
Novikov
,
Appl. Phys. Lett.
83
,
3018
(
2003
).
15.
L.
Khriachtchev
,
M.
Räsänen
,
S.
Novikov
, and
J.
Lahtinen
,
J. Appl. Phys.
95
,
7592
(
2004
).
16.
L.
Khriachtchev
,
S.
Novikov
,
J.
Lahtinen
, and
M.
Räsänen
,
J. Phys.: Condens. Matter
16
,
3219
(
2004
).
17.
J.
Valenta
,
I.
Pelant
, and
J.
Linnros
,
Appl. Phys. Lett.
81
,
1396
(
2002
).
18.
J.
Valenta
,
I.
Pelant
,
K.
Luterova
,
R.
Tomasiunas
,
S.
Cheylan
,
R. G.
Elliman
,
J.
Linnros
, and
B.
Hönerlage
,
Appl. Phys. Lett.
82
,
955
(
2003
).
19.
J.
Valenta
,
T.
Ostatnický
,
I.
Pelant
,
R. G.
Elliman
,
J.
Linnros
, and
B.
Hönerlage
,
J. Appl. Phys.
96
,
5222
(
2004
).
20.
I.
Pelant
,
T.
Ostatnicky
,
J.
Valenta
,
K.
Luterova
,
E.
Skopalova
,
T.
Mates
, and
R. G.
Elliman
,
Appl. Phys. B: Lasers Opt.
83
,
87
(
2006
).
21.
P. K.
Tien
,
Appl. Opt.
10
,
2395
(
1971
).
22.
H. G.
Unger
,
Planar Optical Waveguides and Fibers
(
Clarendon
,
Oxford
,
1977
).
23.
H.
Kogelnik
and
V.
Ramaswamy
,
Appl. Opt.
13
,
1857
(
1974
).
24.
A. V.
Subashiev
and
S.
Luryi
,
J. Lightwave Technol.
24
,
1513
(
2006
).
You do not currently have access to this content.