Heterogeneous iron precipitation in silicon was studied experimentally by measuring the gettering efficiency of oxide precipitate density of 1×1010cm3. The wafers were contaminated with varying iron concentrations, and the gettering efficiency was studied using isothermal annealing in the temperature range from 300to780°C. It was found that iron precipitation obeys the so-called s-curve behavior: if iron precipitation occurs, nearly all iron is gettered. For example, after 30min annealing at 700°C, the highest initial iron concentration of 8×1013cm3 drops to 3×1012cm3, where as two lower initial iron concentrations of 5×1012 and 2×1013cm3 remain nearly constant. This means that the level of supersaturation plays a significant role in the final gettering efficiency, and a rather high level of supersaturation is required before iron precipitation occurs at all. In addition, a model is presented for the growth and dissolution of iron precipitates at oxygen-related defects in silicon during thermal processing. The heterogeneous nucleation of iron is taken into account by special growth and dissolution rates, which are inserted into the Fokker-Planck equation. Comparison of simulated results to experimental ones proves that this model can be used to estimate internal gettering efficiency of iron under a variety of processing conditions.

1.
H.
Hieslmair
,
A. A.
Istratov
,
S. A.
McHugo
,
C.
Flink
,
T.
Heiser
, and
E. R.
Weber
,
Appl. Phys. Lett.
72
,
1460
(
1998
).
2.
H.
Hieslmair
,
S.
Balasubramanian
,
A. A.
Istratov
, and
E. R.
Weber
,
Semicond. Sci. Technol.
16
,
567
(
2001
).
3.
A. L.
Smith
,
K.
Wada
, and
L. C.
Kimerling
,
J. Electrochem. Soc.
147
,
1154
(
2000
).
4.
T. Y.
Tan
,
R.
Gafiteanu
,
S. M.
Joshi
, and
U.
Gösele
, in
Semiconductor Silicon 1998
, edited by
H.
Huff
,
U.
Gösele
, and
H.
Tsuya
(
The Electrochemical Society
,
Pennington, NJ
,
1998
), p.
1050
.
5.
H.
Hieslmaier
,
A. A.
Istratov
, and
E. R.
Weber
,
Semicond. Sci. Technol.
13
,
1401
(
1998
).
6.
K.
Nakamura
and
J.
Tomioka
, in
Proceedings of The Electrochemical Society Spring 2006 Meeting
, Denver, CO, edited by
H.
Huff
,
L.
Fabry
,
D.
Gilles
,
U.
Goesele
,
T.
Hattori
,
W.
Huber
,
S.
Ikeda
,
H.
Iwai
,
P.
Packan
,
H.
Richter
,
M.
Rodder
,
E.
Weber
, and
R.
Wise
(
The Electrochemical Society
,
Pennington, NJ
,
2006
), pp.
275
286
.
7.
P.
Geranzani
,
M.
Pagani
,
C.
Pello
, and
G.
Borionetti
,
Solid State Phenom.
82–84
,
381
(
2002
).
8.
F. S.
Ham
,
J. Phys. Chem. Solids
6
,
335
(
1958
).
9.
D.
Gilles
,
E. R.
Weber
, and
S.
Hahn
,
Phys. Rev. Lett.
64
,
196
(
1990
).
10.
A.
Haarahiltunen
,
M.
Yli-Koski
,
H.
Väinölä
,
M.
Palokangas
,
E.
Saarnilehto
, and
J.
Sinkkonen
,
Phys. Scr., T
T114
,
88
(
2004
).
11.
R. J.
Falster
,
G. R.
Fisher
, and
G.
Ferrero
,
Appl. Phys. Lett.
59
,
809
(
1991
).
12.
R.
Falster
, in
Device Manu
Proceedings of the Satellite Symposium to ESSDERC 93, Grenoble, France
, edited by
B. O.
Kolbesen
,
C.
Claeys
,
P.
Stallhofer
, and
F.
Tardif
(
The Electrochemical Society
,
Pennington, NJ
,
1993
), pp.
149
169
.
13.
A.
Haarahiltunen
,
H.
Väinölä
,
O.
Anttila
,
E.
Saarnilehto
,
M.
Yli-Koski
,
J.
Storgårds
, and
J.
Sinkkonen
,
Appl. Phys. Lett.
87
,
151908
(
2005
).
14.
A.
Borghesi
,
B.
Pivac
,
A.
Sassella
, and
A.
Stella
,
J. Appl. Phys.
77
,
4169
(
1995
).
15.
H.
Takeno
,
T.
Otogawa
, and
Y.
Kitaqawara
,
J. Electrochem. Soc.
144
,
4340
(
1997
).
16.
ASTM F121–83.
17.
H.
Väinölä
,
A.
Haarahiltunen
,
M.
Yli-Koski
,
E.
Saarnilehto
, and
J.
Sinkkonen
, in
Proceedings of The Electrochemical Society Fall 2004 Meeting, Honolulu
, HA, edited by
C. L.
Claeys
,
M.
Watanabe
,
R.
Falster
, and
P.
Stallhofer
(
The Electrochemical Society
,
Pennington, NJ
,
2004
), pp.
160
164
.
18.
A.
Kempf
,
P.
Blöchl
,
A.
Huber
,
L.
Fabry
, and
L.
Meinecke
, in
Recombination Lifetime Measurements in Silicon
, edited by
D. C.
Gupta
,
F. R.
Bacher
, and
W. M.
Hughes
(
ASTM
,
West Conshohocken
,
1998
), p.
259
.
19.
A.
Haarahiltunen
,
H.
Väinölä
,
M.
Yli-Koski
,
E.
Saarnilehto
, and
J.
Sinkkonen
, in
Proceedings of The Electrochemical Society Fall 2004 Meeting, Honolulu
, HA, edited by
C. L.
Claeys
,
M.
Watanabe
,
R.
Falster
, and
P.
Stallhofer
(
The Electrochemical Society
,
Pennington, NJ
,
2004
), pp.
135
145
.
20.
S.
Kobayashi
,
J. Cryst. Growth
174
,
163
(
1997
).
21.
H.
Takahashi
,
H.
Yamada-Kaneta
, and
M.
Suezawa
,
Jpn. J. Appl. Phys., Part 1
37
,
1689
(
1998
).
22.
J.
Vanhellemont
and
C.
Claeys
,
Mater. Sci. Forum
38
,
171
(
1989
).
23.
S. A.
McHugo
,
E. R.
Weber
,
M.
Mizuno
, and
F. G.
Kirscht
,
Appl. Phys. Lett.
66
,
2840
(
1995
).
24.
A.
Mesli
,
T.
Heiser
,
N.
Amroun
, and
P.
Siffert
,
Appl. Phys. Lett.
57
,
1898
(
1990
).
25.
J. S.
Chang
, and
G.
Cooper
,
J. Comput. Phys.
6
,
1
(
1970
).
26.
M.
Aoki
,
A.
Hara
, and
A.
Ohsawa
,
J. Appl. Phys.
72
,
895
(
1992
).
27.
A. A.
Istratov
,
H.
Hieslmair
, and
E. R.
Weber
,
Appl. Phys. A: Mater. Sci. Process.
A69
,
13
(
1999
).
28.
S.
Ogushi
,
S.
Sadamitsu
,
K.
Marsden
,
Y.
Koike
, and
M.
Sano
,
Jpn. J. Appl. Phys., Part 1
36
,
6601
(
1997
).
29.
M.
Aoki
and
A.
Hara
,
J. Appl. Phys.
74
,
1440
(
1993
).
30.
P.
Zhang
,
H.
Väinölä
,
A. A.
Istratov
, and
E. R.
Weber
,
Physica B
340–342
,
1050
(
2003
).
31.
K.
Graff
,
H. A.
Hefner
, and
W.
Hennerici
,
J. Electrochem. Soc.
135
,
952
(
1988
).
32.
B.
Shen
,
T.
Sekiguchi
,
R.
Zhang
,
Y. S.
Shi
,
H.
Shi
,
K.
Yang
,
Y.
Zheng
, and
K.
Sumino
,
Jpn. J. Appl. Phys., Part 1
35
,
3301
(
1996
).
33.
B.
Shen
 et al,
Appl. Phys. Lett.
70
,
1876
(
1997
).
34.
A. A.
Istratov
,
W.
Huber
, and
E. R.
Weber
,
J. Electrochem. Soc.
150
,
G244
(
2003
).
35.
K.
Sueoka
,
M.
Akatsuka
,
M.
Yonemura
,
S.
Sadamitsu
,
E.
Asayama
,
T.
Ono
,
Y.
Koike
, and
H.
Katahama
,
Solid State Phenom.
69–70
,
63
(
1999
).
36.
R.
Hoelzl
,
M.
Blietz
,
L.
Fabry
, and
R.
Schmolke
, in
Semiconductor Silicon/2002
, edited by
H. R.
Huff
,
L.
Fabry
, and
S.
Kishino
(
The Electrochemical Society
,
Pennington, NJ
,
2002
), pp.
608
.
37.
S.
Isomae
,
H.
Ishida
,
Toshihiko
, and
K.
Hozawa
,
J. Electrochem. Soc.
149
,
G343
(
2002
).
You do not currently have access to this content.