Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3μm emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev.127, 750 (1962); J. Chem. Phys.37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H926+F1126H1526 transition was calculated by McCumber theory [Phys. Rev. A.134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Ω2=2.69×1020cm2, Ω4=1.64×1020cm2, and Ω6=1.64×1020cm2, the radiative lifetime was calculated to be 810μs for 1.3μm emission, whose full width at half maximum and σe were 115nm and 2.21×1020cm2, respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.

1.
D. W.
Hewak
,
B. N.
Samson
,
J. A.
Mederios Neto
,
R. I.
Laming
, and
D. N.
Payne
,
Electron. Lett.
30
,
986
(
1994
).
2.
J.
Heo
and
Y. B.
Shin
,
J. Non-Cryst. Solids
196
,
162
(
1996
).
3.
L. F.
Johnson
and
H. J.
Guggenhiem
,
Appl. Phys. Lett.
23
,
96
(
1973
).
4.
N. P.
Barnes
and
R. E.
Allen
,
IEEE J. Quantum Electron.
27
,
277
(
1991
).
5.
K.
Wei
,
D. P.
Machewirth
,
J.
Wenzel
,
E.
Snitzer
, and
G. H.
Sigel
, Jr.
,
Opt. Lett.
19
,
904
(
1994
).
6.
S.
Tanabe
,
T.
Hanada
,
M.
Watanabe
,
T.
Hayashi
, and
N.
Soga
,
J. Am. Ceram. Soc.
78
,
2917
(
1995
).
7.
T.
Schweizer
,
D. W.
Hewak
,
B. N.
Samson
, and
D. N.
Payne
,
Opt. Lett.
21
,
1594
(
1996
).
8.
S.
Tannabe
,
J.
Kang
,
T.
Hanada
, and
N.
Soga
,
J. Non-Cryst. Solids
239
,
170
(
1998
).
9.
V.
Kumar Rai
and
S. B.
Rai
,
Solid State Commun.
132
,
647
(
2004
).
10.
S. Q.
Xu
,
Z. M.
Yang
,
S. X.
Dai
,
J.
Yang
,
L.
Hu
, and
Z.
Jiang
,
J. Alloys Compd.
361
,
313
(
2003
).
11.
12.
G. S.
Ofelt
,
J. Chem. Phys.
37
,
511
(
1962
).
13.
R. D.
Peacock
,
Struct. Bonding (Berlin)
22
,
83
(
1975
).
14.
H.
Li
,
E. Y. B.
Pun
, and
X. R.
Liu
,
J. Non-Cryst. Solids
283
,
27
(
2001
).
15.
W. T.
Carnall
,
P. R.
Fields
, and
K.
Rajnak
,
J. Chem. Phys.
49
,
4443
(
1986
).
16.
D. E.
McCumber
,
Phys. Rev.
134
,
299
(
1964
).
17.
W. J.
Miniscalco
and
R. S.
Quimby
,
Opt. Lett.
16
,
258
(
1991
).
18.
A.
Florez
,
V. A.
Jerez
, and
M.
Florez
,
J. Alloys Compd.
303–304
,
355
(
2000
).
19.
L.
Rama Moorthy
and
A.
Radhapathy
,
J. Non-Cryst. Solids
408–412
,
724
(
2006
).
20.
M. B.
Saisudha
and
J.
Ramakrishna
,
Phys. Rev. B
53
,
6186
(
1996
).
21.
P.
Srivastava
,
S. B.
Rai
, and
D. K.
Rai
,
Spectrochim. Acta, Part A
59
,
3303
(
2003
).
22.
Z.
Yang
,
W.
Chen
, and
L.
Luo
,
J. Non-Cryst. Solids
351
,
2513
(
2005
).
23.
J.
Heo
,
C. R. Chim.
5
,
739
(
2002
).
24.
P. A.
Tick
,
N. F.
Borrelli
,
L. K.
Cornelius
, and
M. A.
Newhouse
,
J. Appl. Phys.
78
,
6367
(
1995
).
25.
Y.
Guimond
,
J. L.
Adam
,
A. M.
Jurdyc
,
J.
Mugnier
,
B.
Jacquier
, and
X. H.
Zhang
,
Opt. Mater. (Amsterdam, Neth.)
12
,
467
(
1999
).
26.
B.
Cole
,
L. B.
Shaw
,
P. C.
Pureza
,
R.
Mossadegh
,
J. S.
Sanghera
, and
I. D.
Aggarwal
,
J. Non-Cryst. Solids
256&257
,
253
(
1999
).
You do not currently have access to this content.