We characterize cross-plane and in-plane Seebeck coefficients for ErAs:InGaAsInGaAlAs superlattices with different carrier concentrations using test patterns integrated with microheaters. The microheater creates a local temperature difference, and the cross-plane Seebeck coefficients of the superlattices are determined by a combination of experimental measurements and finite element simulations. The cross-plane Seebeck coefficients are compared to the in-plane Seebeck coefficients and a significant increase in the cross-plane Seebeck coefficient over the in-plane Seebeck coefficient is observed. Differences between cross-plane and in-plane Seebeck coefficients decrease as the carrier concentration increases, which is indicative of heterostructure thermionic emission in the cross-plane direction.

1.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
2.
M. V.
Simkin
and
G. D.
Mahan
,
Phys. Rev. Lett.
84
,
927
(
2000
).
3.
A.
Shakouri
and
J. E.
Bowers
,
Appl. Phys. Lett.
71
,
1234
(
1997
).
4.
D.
Vashaee
and
A.
Shakouri
,
J. Appl. Phys.
95
,
1233
(
2004
).
5.
D.
Vashaee
and
A.
Shakouri
,
Phys. Rev. Lett.
92
,
106103
(
2004
).
6.
S. T.
Huxtable
 et al,
Appl. Phys. Lett.
80
,
1737
(
2002
).
7.
R.
Venkatasubramanian
,
Phys. Rev. B
61
,
3091
(
2000
).
8.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
297
,
2229
(
2002
).
9.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
,
Nature (London)
413
,
597
(
2001
).
10.
G.
Chen
,
A.
Narayanaswamy
, and
C.
Dames
,
Superlattices Microstruct.
35
,
161
(
2004
).
11.
B.
Yang
,
J. L.
Liu
,
K. L.
Wang
, and
G.
Chen
,
Appl. Phys. Lett.
80
,
1758
(
2002
).
12.
B.
Yang
,
W. L.
Liu
,
J. L.
Liu
,
K. L.
Wang
, and
G.
Chen
,
Appl. Phys. Lett.
81
,
3588
(
2002
).
13.
Y.
Zhang
,
G.
Zeng
,
R.
Singh
,
J.
Christofferson
,
E.
Croke
,
J. E.
Bowers
, and
A.
Shakouri
, in “
Measurement of Seebeck coefficient perpendicular to SiGe superlattice
,”
21st International Conference on Thermoelectronics
, 25–29 August
2002
, pp.
329
332
.
14.
D. C.
Driscoll
,
M.
Hanson
,
C.
Kadow
, and
A. C.
Gossard
,
Appl. Phys. Lett.
78
,
1703
(
2001
).
15.
D. C.
Driscoll
,
M. P.
Hanson
,
E.
Mueller
, and
A. C.
Gossard
,
J. Cryst. Growth
251
,
243
(
2003
).
16.
J. M.
Zide
,
D. O.
Klenov
,
S.
Stemmer
,
A. C.
Gossard
,
G.
Zeng
,
J. E.
Bowers
,
D.
Vashaee
, and
A.
Shakouri
,
Appl. Phys. Lett.
87
,
112102
(
2005
).
17.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
,
Phys. Rev. Lett.
96
,
045901
(
2006
).
18.
W.
Kim
 et al,
Appl. Phys. Lett.
88
,
242107
(
2006
).
19.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
20.
S.
Adachi
,
Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP
(
Wiley
,
New York
,
1992
).
21.
I.
Kudman
and
E. F.
Steigmeier
,
Phys. Rev.
133
,
A1665
(
1964
).
22.
G.
Chen
and
A.
Shakouri
,
ASME Trans. J. Heat Transfer
124
,
242
(
2002
).
You do not currently have access to this content.