The formation of buried heavily damaged and amorphous layers by a variety of swift-ion irradiations (F at 22MeV, O at 20MeV, and Mg at 28MeV) on congruent LiNbO3 has been investigated. These irradiations assure that the electronic stopping power Se(z) is dominant over the nuclear stopping Sn(z) and reaches a maximum value inside the crystal. The structural profile of the irradiated layers has been characterized in detail by a variety of spectroscopic techniques including dark-mode propagation, micro-Raman scattering, second-harmonic generation, and Rutherford backscattering spectroscopy∕channeling. The growth of the damage on increasing irradiation fluence presents two differentiated stages with an abrupt structural transition between them. The heavily damaged layer reached as a final stage is optically isotropic (refractive index n=2.10, independent of bombarding ion) and has an amorphous structure. Moreover, it has sharp profiles and its thickness progressively increases with irradiation fluence. The dynamics under irradiation of the amorphous-crystalline boundaries has been associated with a reduction of the effective amorphization threshold due to the defects created by prior irradiation (cumulative damage). The kinetics of the two boundaries of the buried layer is quite different, suggesting that other mechanisms aside from the electronic stopping power should play a role on ion-beam damage.

1.
Ion Implantation-2000: Science and Technology
, edited by
J. F.
Ziegler
(
Lattice
,
Sunset Beach, CA
,
2000
).
2.
M.
Nastasi
,
J. W.
Mayer
, and
J. K.
Hirvonen
,
Ion-Solid Interactions: Fundamentals and Applications
(
Cambridge University Press
,
Cambridge
,
1996
).
3.
P. D.
Townsend
,
P. J.
Chandler
, and
L.
Zhang
,
Optical Effects of Ion Implantation
(
Cambridge University Press
,
Cambridge
,
1994
).
4.
R. L.
Fleischer
,
P. B.
Price
, and
R. M.
Walker
,
Nuclear Tracks in Solids
(
University of California Press
,
Berkeley
,
1975
).
5.
M.
Toulemonde
,
S.
Bouffard
, and
F.
Studer
,
Nucl. Instrum. Methods Phys. Res. B
91
,
108
(
1994
).
6.
E.
Ferain
and
R.
Legras
,
Nucl. Instrum. Methods Phys. Res. B
174
,
116
(
2001
).
7.
8.
R.
Spohr
, in
Ion Tracks and Microtechnology: Basic Principles and Applications
, edited by
K.
Bethge
(
Vieweg
,
Braunschweig
,
1990
).
9.
M.
Toulemonde
,
C.
Trautmann
,
E.
Balanzat
,
K.
Hjort
, and
A.
Weidinger
,
Nucl. Instrum. Methods Phys. Res. B
216
,
1
(
2004
).
10.
J.
Olivares
,
A.
García-Navarro
,
G.
García
,
A.
Méndez
, and
F.
Agulló-López
,
Appl. Phys. Lett.
89
,
071923
(
2006
).
11.
G. G.
Bentini
 et al,
J. Appl. Phys.
92
,
6477
(
2002
).
12.
G. G.
Bentini
 et al,
J. Appl. Phys.
96
,
242
(
2004
).
13.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
J. C.
Soares
, and
A.
Kling
,
Nucl. Instrum. Methods Phys. Res. B
242
,
534
537
(
2006
).
14.
M.
Bianconi
 et al,
Appl. Phys. Lett.
87
,
072901
(
2005
).
15.
J.
Olivares
,
G.
García
,
F.
Agulló-López
,
F.
Agulló-Rueda
,
A.
Kling
, and
J. C.
Soares
,
Appl. Phys. A: Mater. Sci. Process.
A81
,
1465
(
2005
).
16.
J.
Olivares
,
G.
García
,
A.
García-Navarro
,
F.
Agulló-López
,
O.
Caballero
, and
A.
García-Cabañes
,
Appl. Phys. Lett.
86
,
183501
(
2005
).
17.
Properties of Lithium Niobate
,
EMIS Datareview Series
, Edited by
K. K.
Wong
(
INSPEC
,
Exeter
,
2002
).
18.
F.
Agulló-López
,
J. M.
Cabrera
, and
F.
Agulló-Rueda
,
Electrooptics: Phenomena, Materials and Applications
(
Academic
,
London
,
1994
).
19.
The Stopping and Ranges of Ions in Solids
, edited by
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
(
Pergamon
,
New York
,
1985
);
see also the SRIM web page, http://www.srim.org
20.
D. J. W.
Mous
,
A.
Gottdang
,
R. G.
Haitsma
,
G.
García López
,
A.
Climent-Font
,
F.
Agulló-López
, and
D. O.
Boerma
, Proceedings CAARI
2002
;
21.
J.
Rams
and
J. M.
Cabrera
,
J. Mod. Opt.
47
,
1659
(
2000
).
22.
G. L.
Destefanis
,
J. P.
Gailliard
,
E. L.
Ligeon
,
S.
Valette
,
B. W.
Farmery
,
P. D.
Townsend
, and
A.
Perez
,
J. Appl. Phys.
50
,
7898
(
1980
).
23.
R. F.
Schaufele
and
M. J.
Weber
,
Phys. Rev.
152
,
705
(
1966
).
24.
Y.
Lin
,
Y.
Li
,
Y.
Xu
,
G.
Lan
, and
H.
Wang
,
J. Appl. Phys.
77
,
3584
(
1995
).
25.
S. H.
Kim
,
S. J.
Lee
,
J. P.
Kim
,
B. G.
Chae
,
Y. S.
Yang
, and
M. S.
Jang
,
J. Korean Phys. Soc.
32
,
S830
(
1998
).
26.
J.
Rams
,
J.
Olivares
,
P. J.
Chandler
, and
P. D.
Townsend
,
J. Appl. Phys.
84
,
5180
(
1998
).
27.
F.
Agulló-López
,
G.
García
, and
J.
Olivares
,
J. Appl. Phys.
97
,
093514
(
2005
).
28.
G.
García
,
F.
Agulló-López
,
J.
Olivares-Villegas
, and
A.
García-Navarro
,
J. Appl. Phys.
99
,
1
(
2006
).
29.
T. A.
Tombrello
,
Nucl. Instrum. Methods Phys. Res. B
94
,
424
(
1994
).
30.
A.
Meftah
,
J. M.
Constantini
,
N.
Khalfaoui
,
S.
Boudjadar
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Nucl. Instrum. Methods Phys. Res. B
237
,
563
(
2005
).
31.
A. M.
Glazer
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
28
,
3384
(
1972
).
32.
A. M.
Glazer
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
31
,
756
(
1975
).
You do not currently have access to this content.