The effect of nonstoichiometry on the thermoelectric properties of a Ag2Se alloy prepared by a mechanical alloying and pulse discharge sintering process has been investigated. The x-ray diffraction pattern confirms that the Ag2Se alloy was synthesized by using a mechanical alloying process. The thermal conductivity and the figure-of-merit (Z) value of the Ag2Se alloy was 0.65W∕Kmand0.282×103K, respectively. Both the Z values of the excess Ag and excess Se alloy were much higher than that of Ag2Se alloy, probably the result of the increased power factor. However, the mechanism for the increase is different with the alloy type. In the case of the excess Ag alloy, the carrier concentration was increased by the excess amount of pure Ag atoms and/or clusters, resulting in an increase in electrical conductivity. To the contrary, for the excess Se alloy, the Hall mobility, which has a crucial effect on Z value, was increased because of the low carrier concentration. As a result, the Z value was improved from 0.282×103K(Ag2Se) to 0.912×103K(Ag2.05Se0.95) and 2.016×103K(Ag1.975Se1.025). Thus, the thermoelectric Z value for silver selenide can be dramatically increased by the presence of a small, nonstoichiometric amount of Ag or Se.

1.
R.
Dalven
and
R.
Gill
,
Phys. Rev.
159
,
645
(
1967
).
2.
R.
Dalven
and
R.
Gill
,
J. Appl. Phys.
38
,
753
(
1967
).
3.
V.
Damodara Das
and
D.
Karunakaran
,
Phys. Rev. B
39
,
10872
(
1989
).
4.
V.
Damodara Das
and
D.
Karunakaran
,
J. Appl. Phys.
67
,
878
(
1990
).
5.
S.
Vitta
,
J. Appl. Phys.
68
,
3413
(
1990
).
6.
M.
Ferhat
and
J.
Nagao
,
J. Appl. Phys.
88
,
813
(
2000
).
7.
Y.
Kumashiro
,
T.
Ohachi
, and
I.
Taniguchi
,
Solid State Ionics
761
,
86
(
1996
).
8.
M. C.
Santhosh Kumar
and
B.
Pradeep
,
Mater. Lett.
56
,
491
(
2002
).
9.
K.
Somogyi
and
G.
Sáfrán
,
J. Appl. Phys.
78
,
6855
(
1995
).
10.
11.
P.
Junod
,
Helv. Phys. Acta
32
,
567
(
1959
).
12.
R.
Xu
,
A.
Husmann
,
T. F.
Rosenbaum
,
M. -L.
Saboungi
,
J. E.
Enderby
, and
P. B.
Littlewood
,
Nature
390
,
57
(
1997
).
13.
Z.
Ogorelec
,
A.
Hamzić
, and
M.
Basletić
,
Europhys. Lett.
46
,
56
(
1999
).
14.
A. A.
Abrikosov
,
Phys. Rev. B
58
,
2788
(
1998
).
15.
A. A.
Abrikosov
,
Europhys. Lett.
49
,
789
(
2000
).
16.
G.
Beck
and
J.
Janek
,
Physica B
1086
,
308
(
2001
).
17.
S. S.
Manoharan
,
S. J.
Prasanna
,
D. E.
Kiwitz
, and
C. M.
Schneider
,
Phys. Rev. B
63
,
212405
(
2001
).
18.
B. Q.
Liang
,
X.
Chen
,
Y. J.
Wang
, and
Y. J.
Tang
,
Phys. Rev. B
61
,
3239
(
2000
).
19.
H. S.
Schnyders
,
M. -L.
Saboungi
, and
T. F.
Rosenbaum
,
Appl. Phys. Lett.
76
,
1710
(
2000
).
20.
Y.
Sun
,
M. B.
Salamon
,
M.
Lee
, and
T. F.
Rosenbaum
,
Appl. Phys. Lett.
82
,
1440
(
2003
).
21.
V. A.
Kutasov
,
L. N.
Luk’yanova
,
P. P.
Konstantinov
, and
G. T.
Alekseeva
,
Phys. Solid State
39
,
419
(
1997
).
22.
H. C.
Kim
,
T. S.
Oh
, and
D. -B.
Hyun
,
J. Phys. Chem. Solids
61
,
743
(
2000
).
23.
R.
Martin-Lopez
,
B.
Lenoir
,
X.
Devaux
,
A.
Dauscher
, and
H.
Scherrer
,
Mater. Sci. Eng., A
248
,
147
(
1998
).
24.
C
.
Lee
,
Y. -H.
Park
, and
H.
Hashimoto
,
J. Appl. Phys.
96
,
3852
(
2004
).
25.
G. A.
Slack
and
M. A.
Hussain
,
J. Appl. Phys.
70
,
2694
(
1991
).
26.
A. E.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Info Search
,
London
,
1957
), p.
64
.
27.
G.
Mahan
,
J. Appl. Phys.
65
,
1578
(
1989
).
You do not currently have access to this content.