In this paper we present a systematic study on the formation of He ion implantation induced nanovoids in Si and how they influence the self-interstitial (Is) supersaturation, thus affecting the diffusion and electrical activation of implanted boron in crystalline silicon. We implanted He ions into (100)-oriented Si wafers, with doses ranging from 5×1015to8×1016Heionscm2 and energies ranging from 25to110keV. Then, we implanted B ions (12keV, 5×1014ionscm2). All samples were annealed at 800°C in N2 atmosphere. We demonstrated the role of nanovoids in reducing B diffusion already at the first stages of postimplantation annealing. The effect has been attributed to the Is trapping by the nanovoids that forces B to assume a boxlike profile. Moreover, we studied the nanovoid distribution as a function of He-implanted dose and energy, demonstrating, by means of Cu gettering experiments, the beneficial effect of increasing dose or decreasing energy of He implantation on the B diffusion and electrical activation. In fact, if the nanovoid density is high in the proximity of implanted B, implantation-related damage can annihilate at the internal dangling bonds of nanovoids, thus consuming the nanovoid layer. The potential of He coimplantation as a method for controlling point-defect distributions in crystalline Si is presented and critically discussed.

1.
International Technology Roadmap for Semiconductors
(ITRS), http://public.itrs.net
2.
W. K.
Hofker
,
H. W.
Werner
,
D. P.
Oosthoek
, and
H. A. M.
de-Grefte
,
Appl. Phys.
2
,
165
(
1973
).
3.
P. A.
Stolk
 et al,
J. Appl. Phys.
81
,
6031
(
1997
) and references therein.
4.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Lindsay
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
) and references therein.
5.
S.
Solmi
,
F.
Baruffaldi
, and
R.
Canteri
,
J. Appl. Phys.
69
,
2135
(
1991
).
6.
L.
Pelaz
,
M.
Jaraiz
,
G. H.
Gilmer
,
H.-J.
Gossmann
,
C. S.
Rafferty
,
D. J.
Eaglesham
, and
J. M.
Poate
,
Appl. Phys. Lett.
70
,
17
(
1997
).
7.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
D.
De Salvador
,
E.
Napolitani
,
A. V.
Drigo
, and
A.
Carnera
,
Appl. Phys. Lett.
83
,
680
(
2003
).
8.
D.
De Salvador
,
E.
Napolitani
,
G.
Bisognin
,
A.
Carnera
,
E.
Bruno
,
S.
Mirabella
,
G.
Impellizzeri
, and
F.
Priolo
,
Appl. Phys. Lett.
87
,
221902
(
2005
).
9.
B. J.
Pawlak
 et al,
Appl. Phys. Lett.
84
,
2055
(
2004
).
10.
A.
Smith
 et al,
Appl. Phys. Lett.
88
,
082112
(
2006
).
11.
L.
Shao
,
J.
Liu
,
Q. Y.
Chen
, and
W.-K.
Chu
,
Mater. Sci. Eng., R.
42
,
65
(
2003
).
12.
N. E. B.
Cowern
,
A.
Cacciato
,
J. S.
Custer
,
F. W.
Saris
, and
W.
Vandervorst
,
Appl. Phys. Lett.
68
,
1150
(
1996
).
13.
E.
Napolitani
,
A.
Coati
,
D.
De Salvador
,
A.
Carnera
,
S.
Mirabella
,
S.
Scalese
, and
F.
Priolo
,
Appl. Phys. Lett.
79
,
4145
(
2001
).
14.
D. F.
Downey
,
J. W.
Chow
,
E.
Ishida
, and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
1263
(
1998
).
15.
G.
Impellizzeri
,
J. H. R.
dos Santos
,
S.
Mirabella
,
F.
Priolo
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
84
,
1862
(
2004
).
16.
C. C.
Griffioen
,
J. H.
Evans
,
P. C.
De Jong
, and
A.
Van Veen
,
Nucl. Instrum. Methods Phys. Res. B
27
,
417
(
1987
).
17.
V.
Raineri
,
M.
Saggio
, and
E.
Rimini
,
J. Mater. Res.
15
,
1449
(
2000
), and references therein.
18.
G. F.
Cerofolini
,
F.
Corni
,
S.
Frabboni
,
C.
Nobili
,
G.
Ottaviani
, and
R.
Tonini
,
Mater. Sci. Eng., R.
27
,
1
(
2000
), and references therein.
19.
V.
Raineri
,
P. G.
Fallica
,
G.
Percolla
,
A.
Battaglia
,
M.
Barbagallo
, and
S. U.
Campisano
,
J. Appl. Phys.
78
,
3727
(
1995
) and references therein.
20.
V.
Raineri
and
S. U.
Campisano
,
Appl. Phys. Lett.
69
,
1783
(
1996
).
21.
J.
Wong-Leung
,
J. S.
Williams
, and
M.
Petravic
,
Appl. Phys. Lett.
72
,
2418
(
1998
).
22.
S.
Wang
and
P.
Zhu
,
Mater. Sci. Eng., B
72
,
142
(
2000
).
23.
F.
Cayrel
,
D.
Alquier
,
D.
Mathiot
,
L.
Ventura
,
L.
Vincent
,
G.
Gaudin
, and
R.
Jérisian
,
Nucl. Instrum. Methods Phys. Res. B
216
,
291
(
2004
).
24.
V.
Raineri
,
P. G.
Fallica
, and
S.
Libertino
,
J. Appl. Phys.
79
,
9012
(
1996
).
25.
V.
Raineri
,
M.
Saggio
,
F.
Frisina
, and
E.
Rimini
,
Solid-State Electron.
42
,
2295
(
1998
).
26.
F.
Roqueta
,
D.
Alquier
,
L.
Ventura
,
Ch.
Dubois
, and
R.
Jérisian
,
Nucl. Instrum. Methods Phys. Res. B
183
,
318
(
2001
).
27.
A.
Peeva
,
P. F. P.
Fichtner
,
D. L.
da Silva
,
M.
Behar
,
R.
Koegler
, and
W.
Skorupa
,
J. Appl. Phys.
91
,
69
(
2002
).
28.
I.
Perichaud
,
E.
Yakimov
,
S.
Martinuzzi
, and
C.
Dubois
,
J. Appl. Phys.
90
,
2806
(
2001
).
29.
V. C.
Venezia
,
D. J.
Eaglesham
,
T. E.
Haynes
,
A.
Agarwal
,
D. C.
Jacobson
,
H.-J.
Gossmann
, and
H. F.
Baumann
,
Appl. Phys. Lett.
73
,
2980
(
1998
).
30.
R.
Krause-Rehberg
,
F.
Börner
, and
F.
Redmann
,
Appl. Phys. Lett.
77
,
3932
(
2000
).
31.
J. S.
Williams
,
M. J.
Conway
,
B. C.
Williams
, and
J.
Wong-Leung
,
Appl. Phys. Lett.
78
,
2867
(
2001
).
32.
V.
Raineri
,
S.
Coffa
,
E.
Szilàgyi
,
J.
Gyulai
, and
E.
Rimini
,
Phys. Rev. B
61
,
937
(
2000
).
33.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
F.
Giannazzo
,
C.
Buongiorno
,
V.
Raineri
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
88
,
191910
(
2006
).
34.
S. M.
Myers
and
D. M.
Follstaedt
,
J. Appl. Phys.
79
,
1337
(
1996
) and references therein.
35.
L.
Romano
,
E.
Napolitani
,
V.
Privitera
,
S.
Scalese
,
A.
Terrasi
,
S.
Mirabella
, and
M. G.
Grimaldi
,
Mater. Sci. Eng., B
102
,
49
(
2003
).
36.
N. E. B.
Cowern
 et al,
Phys. Rev. Lett.
82
,
4460
(
1999
).
37.
B.
Stritzker
,
M.
Petravic
,
J.
Wong-Leung
, and
J. S.
Williams
,
Appl. Phys. Lett.
78
,
2682
(
2001
).
38.
S. M.
Myers
,
D. M.
Follstaedt
,
G. A.
Petersen
,
C. H.
Seager
,
H. J.
Stein
, and
W. R.
Wampler
,
Nucl. Instrum. Methods Phys. Res. B
106
,
379
(
1995
).
39.
S. M.
Myers
,
G. A.
Petersen
,
D. M.
Follstaedt
,
T. J.
Headley
,
J. R.
Michael
, and
C. H.
Seager
,
Nucl. Instrum. Methods Phys. Res. B
120
,
43
(
1996
).
40.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
) and reference therein.
41.
R. B.
Fair
, in
Impurity Doping Processes in Si
, edited by
F. F. Y.
Wang
(
North-Holland
,
Amsterdam
,
1981
), p.
315
.
42.
N. E. B.
Cowern
,
K. T. F.
Janssen
,
G. F. A.
van de Walle
, and
D. J.
Gravesteijn
,
Phys. Rev. Lett.
65
,
2434
(
1990
).
43.
N. E. B.
Cowern
,
G. F. A.
van de Walle
,
D. J.
Gravesteijn
, and
C. J.
Vriezema
,
Phys. Rev. Lett.
67
,
212
(
1991
).
You do not currently have access to this content.