The influence of crystallographic orientation and ion fluence on the shape of damage distributions induced by 500keVN+ implantation at room temperature into 6HSiC is investigated. The irradiation was performed at different tilt angles between 0° and 4° with respect to the ⟨0001⟩ crystallographic axis in order to consider the whole range of beam alignment from channeling to random conditions. The applied implantation fluence range was 2.5×10143×1015cm2. A special analytical method, 3.55MeVHe+4 ion backscattering analysis in combination with channeling technique (BS∕C), was employed to measure the disorder accumulation simultaneously in the Si and C sublattices of SiC with good depth resolution. For correct energy to depth conversion in the BS∕C spectra, the average electronic energy loss per analyzing He ion for the ⟨0001⟩ axial channeling direction was determined. It was found that the tilt angle of nitrogen implantation has strong influence on the shape of the induced disorder profiles. Significantly lower disorder was found for channeling than for random irradiation. Computer simulation of the measured BS∕C spectra showed the presence of a simple defect structure in weakly damaged samples and suggested the formation of a complex disorder state for higher disorder levels. Full-cascade atomistic computer simulation of the ion implantation process was performed to explain the differences in disorder accumulation on the Si and C sublattices. The damage buildup mechanism was interpreted with the direct-impact, defect-stimulated amorphization model in order to understand damage formation and to describe the composition of structural disorder versus the ion fluence and the implantation tilt angle.

1.
M.
Laube
,
F.
Schmid
,
G.
Pensl
,
G.
Wagner
,
M.
Linnarsson
, and
M.
Maier
,
J. Appl. Phys.
92
,
549
(
2002
).
2.
D.
Åberg
,
A.
Hallén
,
P.
Pellegrino
, and
B. G.
Svensson
,
Appl. Phys. Lett.
78
,
2908
(
2001
).
3.
U.
Gerstmann
,
E.
Rauls
,
Th.
Frauenheim
, and
H.
Overhof
,
Phys. Rev. B
67
,
205202
(
2003
).
4.
F.
Gao
and
W. J.
Weber
,
Phys. Rev. B
66
,
024106
(
2002
).
5.
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res. B
166–167
,
98
(
2000
).
6.
J.
Wong-Leung
,
M. S.
Janson
, and
B. G.
Svensson
,
J. Appl. Phys.
93
,
8914
(
2003
).
7.
J.
Wong-Leung
,
M. K.
Linnarsson
,
B. G.
Svensson
, and
D. J. H.
Cockayne
,
Phys. Rev. B
71
,
165210
(
2005
).
8.
E.
Morvan
,
N.
Mestres
,
F. J.
Campos
,
J.
Pascual
,
A.
Hallén
,
M.
Linnarson
, and
A. Yu.
Kuznetsov
,
Mater. Sci. Forum
338–342
,
893
(
2000
).
9.
M. S.
Janson
,
J.
Slotte
,
A.
Yu Kuznetsov
,
K.
Saarinen
, and
A.
Hallén
,
J. Appl. Phys.
95
,
57
(
2004
).
10.
M. S.
Janson
,
A.
Hallén
,
P.
Godignon
,
A.
Yu Kuznetsov
,
M. K.
Linnarson
,
E.
Morvan
, and
B. G.
Svensson
,
Mater. Sci. Forum
338–342
,
889
(
2000
).
11.
A.
Ster
,
M.
Posselt
,
A.
Hallén
, and
M.
Janson
, in
Proceedings of the 13th International Conference Ion Implantation Technology
, edited by
H.
Ryssel
,
L.
Frey
,
J.
Gyulai
, and
H.
Glawischnig
(
IEEE
,
Piscataway, NJ
,
2001
), p.
220
.
12.
M.
Posselt
,
L.
Bischoff
,
J.
Teichert
, and
A.
Ster
,
J. Appl. Phys.
93
,
1004
(
2003
).
13.
S.
Ahmed
,
C. J.
Barbero
,
T. W.
Sigmon
, and
J. W.
Erickson
,
J. Appl. Phys.
77
,
6194
(
1995
).
14.
W.
Wesch
,
A.
Heft
,
J.
Heindl
,
H. P.
Strunk
,
T.
Bachmann
,
E.
Glaser
, and
E.
Wendler
,
Nucl. Instrum. Methods Phys. Res. B
106
,
339
(
1995
).
15.
M. G.
Grimaldi
,
L.
Calcagno
, and
P.
Musumeci
,
J. Appl. Phys.
81
,
7181
(
1997
).
16.
W.
Jiang
,
W. J.
Weber
,
S.
Thevuthasan
, and
D. E.
McCready
,
Surf. Interface Anal.
27
,
179
(
1999
).
17.
M.
Posselt
,
Radiat. Eff. Defects Solids
130–131
,
87
(
1994
).
18.
M.-A.
Nicolet
,
H. R.
Bilger
, and
O.
Meyer
,
Phys. Status Solidi A
3
,
1019
(
1970
).
19.
J.
Lindhard
,
Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
34
,
1
(
1965
).
20.
J. H.
Barrett
,
Phys. Rev. B
3
,
1527
(
1971
).
21.
A.
Zywietz
,
K.
Karch
, and
F.
Bechstedt
,
Phys. Rev. B
54
,
1791
(
1996
).
22.
E.
Szilágyi
,
E.
Kótai
,
N. Q.
Khánh
,
Z.
Zolnai
,
G.
Battistig
,
T.
Lohner
, and
J.
Gyulai
, in
Proceedings of the 13th International Conference on Ion Implantation Technology
, edited by
H.
Ryssel
,
L.
Frey
,
J.
Gyulai
, and
H.
Glawischnig
(
IEEE
,
Piscataway, NJ
,
2001
), p.
131
.
23.
Handbook of Modern Ion Beam Materials Analysis
, edited by
J. R.
Tesmer
, and
M.
Nastasi
(
Materials Research Society
,
Pittsburgh
,
1995
), p.
497
.
24.
W.
Jiang
,
W. J.
Weber
,
S.
Thevuthasan
, and
D. E.
McCready
,
Nucl. Instrum. Methods Phys. Res. B
161–163
,
501
(
2000
).
25.
I.
Nashiyama
,
T.
Nishijima
,
E.
Sakuma
, and
S.
Yoshida
,
Nucl. Instrum. Methods Phys. Res. B
33
,
599
(
1988
).
26.
Y.
Feng
,
Z.
Zhou
,
Y.
Zhou
, and
G.
Zhou
,
Nucl. Instrum. Methods Phys. Res. B
86
,
225
(
1994
).
27.
E.
Szilágyi
,
F.
Pászti
, and
G.
Amsel
,
Nucl. Instrum. Methods Phys. Res. B
100
,
103
(
1995
).
28.
Z.
Zolnai
,
N. Q.
Khánh
,
E.
Szilágyi
,
E.
Kótai
,
A.
Ster
,
M.
Posselt
,
T.
Lohner
, and
J.
Gyulai
,
Diamond Relat. Mater.
11
,
1239
(
2002
).
29.
N. Q.
Khánh
,
Z.
Zolnai
,
T.
Lohner
,
L.
Tóth
,
L.
Dobos
, and
J.
Gyulai
,
Nucl. Instrum. Methods Phys. Res. B
161–163
,
424
(
2000
).
30.
F.
Pászti
,
A.
Manuaba
,
C.
Hajdu
,
A. A.
Melo
, and
M. F.
Da Silva
,
Nucl. Instrum. Methods Phys. Res. B
47
,
187
(
1990
).
31.
E.
Kótai
,
Nucl. Instrum. Methods Phys. Res. B
85
,
588
(
1994
).
32.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1985
).
33.
Y.
Zhang
and
W. J.
Weber
,
Appl. Phys. Lett.
83
,
1665
(
2003
).
34.
J. H. R.
dos Santos
,
P. L.
Grande
,
M.
Behar
,
H.
Boudinov
, and
G.
Schiwietz
,
Phys. Rev. B
55
,
4332
(
1997
).
35.
G. d. M.
Avezedo
,
J. R. A.
Kaschny
,
J. F.
Dias
,
P. L.
Grande
,
M.
Behar
,
Ch.
Klatt
, and
S.
Kalbitzer
,
Nucl. Instrum. Methods Phys. Res. B
148
,
168
(
1999
).
36.
M.
Kokkoris
 et al.,
Nucl. Instrum. Methods Phys. Res. B
184
,
319
(
2001
).
37.
O. S.
Oen
and
M. T.
Robinson
,
Nucl. Instrum. Methods
132
,
647
(
1976
).
38.
M.
Posselt
and
A.
Ster
(private communication).
39.
K.
Rüschenschmidt
,
H.
Bracht
,
N. A.
Stolwijk
,
M.
Laube
,
G.
Pensl
, and
G. R.
Brandes
,
J. Appl. Phys.
96
,
1458
(
2004
), and references therein.
40.
Z.
Zolnai
,
N. T.
Son
,
C.
Hallin
, and
E.
Janzén
,
J. Appl. Phys.
96
,
2406
(
2004
).
42.
E.
Kótai
,
Proceedings of the 14th International Conference on Application of Accelerators in Research and Industry
(
AIP
,
New York
,
1997
) p.
631
.
43.
L. C.
Feldman
,
J. W.
Mayer
, and
S. T.
Picraux
,
Materials Analysis by Ion Channeling
(
Academic
,
New York
,
1982
).
44.
L.
Mayer
,
Phys. Status Solidi
44
,
253
(
1971
).
45.
M. K.
Leung
, Ph.D. thesis,
University of Kentucky
,
1972
.
46.
W.
Jiang
,
C. M.
Wang
,
W. J.
Weber
,
M. V.
Engelhard
, and
L. V.
Saraf
,
J. Appl. Phys.
95
,
4687
(
2004
).
47.
L.
Storasta
, Ph.D. thesis,
Linköping University
,
2003
.
48.
J. W.
Steeds
,
F.
Carossela
,
G. A.
Evans
,
M. M.
Ismail
,
L. R.
Danks
, and
W.
Voegeli
,
Mater. Sci. Forum
353–356
,
381
(
2001
).
49.
A. L.
Barry
,
B.
Lehmann
,
D.
Fritsch
, and
D.
Bräunig
,
IEEE Trans. Nucl. Sci.
38
,
1111
(
1991
).
50.
H. J.
von Bardeleben
,
J. L.
Cantin
,
L.
Henry
, and
L. F.
Barthe
,
Phys. Rev. B
62
,
10841
(
2000
).
51.
R.
Devanathan
,
W. J.
Weber
, and
F.
Gao
,
J. Appl. Phys.
90
,
2303
(
2001
).
52.

Note that this feature can be observed for Crystal-TRIM simulations performed with any implantation tilt angle between 0° and 7° with respect to the c axis and with any rotation angle between 0° and 360° with respect to the (1120) plain.

53.
Y.
Zhang
,
W. J.
Weber
,
W.
Jiang
,
C. M.
Wang
,
V.
Shutthanandan
, and
A.
Hallén
,
J. Appl. Phys.
95
,
4012
(
2003
).
54.
H. J.
von Bardeleben
,
J. L.
Cantin
,
I.
Vickridge
, and
G.
Battistig
,
Phys. Rev. B
62
,
10126
(
2000
).
55.
L.
Storasta
,
J. P.
Bergman
,
E.
Janzén
,
A.
Henry
, and
J.
Lu
,
J. Appl. Phys.
96
,
4909
(
2004
).
You do not currently have access to this content.