Simultaneous bombardment of tungsten layers with helium and carbon ions leads to both erosion of tungsten and implantation of carbon. The underlying processes have been investigated numerically and experimentally as a function of the carbon fraction in the incident ion flux for ion energies in the kilo electron volt range. Tungsten layers were deposited on polished single-crystal silicon substrate by magnetron sputter deposition to eliminate the influence of surface roughness on the experimental results. The fluence-dependent dynamics of the surface composition was measured in situ by ion beam analysis. The given projectile-target system is subject only to kinematic processes, and is therefore particularly suitable for benchmarking of purely kinematic simulations based on the binary-collision approximation, as implemented in the TRIDYN code. TRIDYN calculations match the experimental results very well, which demonstrates the validity of the kinematic description. In particular, the simulations allow us to predict the change of surface composition by bombardment with gaseous and nonvolatile ions, as well as the transition point from W erosion to C deposition as function of the carbon fraction in the incident ion flux.

1.
G.
Janeschitz
,
ITER JCT
, and
ITER HTs
,
J. Nucl. Mater.
290–293
,
1
(
2001
).
2.
D.
Meade
 et al., “
Mission and design of the fusion ignition research experiment
,” in
Proceedings of the 18th IAEA Conference on Fusion Energy
, Sorrento, Italy, October 2000 (
IAEA
,
Vienna
,
2001
) (CD-ROM), pp.
IAEA
CN
77
FTP2
.
3.
S.
Nishio
 et al., “
Conceptional design of advanced steady-state tokamak reactor
,” in
Proceedings of the 18th Conference on Fusion Energy
, Sorrento, Italy, October 2000 (
IAEA
,
Vienna
,
2001
) (CDROM), pp.
IAEA
CN
77
FTP2
.
4.
K.
Krieger
 et al.,
J. Nucl. Mater.
266–269
,
207
(
1999
).
5.
W.
Eckstein
and
J.
Roth
,
Nucl. Instrum. Methods Phys. Res. B
53
,
279
(
1991
).
6.
K.
Schmid
and
J.
Roth
,
J. Nucl. Mater.
302
,
96
(
2002
).
7.
I.
Bizyukov
,
K.
Krieger
,
N.
Azarenkov
, and
U.
von Toussaint
,
J. Appl. Phys.
100
,
113302
(
2006
).
8.
W.
Eckstein
,
K.
Krieger
, and
J.
Roth
,
J. Nucl. Mater.
258–263
,
912
(
1998
).
9.
K.
Schmid
and
J.
Roth
,
J. Nucl. Mater.
313–316
,
302
(
2003
).
10.
W.
Möller
,
W.
Eckstein
, and
J. P.
Biersack
,
Comput. Phys. Commun.
51
,
355
(
1988
).
11.
S. Y.
Tong
,
W. N.
Lennard
,
P. F. A.
Alkemada
, and
I. V.
Mitchell
,
Nucl. Instrum. Methods Phys. Res. B
45
,
41
(
1990
).
12.
I.
Bizyukov
and
K.
Krieger
,
Rev. Sci. Instrum.
77
,
043501
(
2006
).
13.
I.
Bizyukov
,
K.
Krieger
,
N.
Azarenkov
,
S.
Levchuk
, and
Ch.
Linsmeier
,
J. Nucl. Mater.
337–339
,
965
(
2005
).
14.
H. T.
Lee
,
A. A.
Haasz
,
J. W.
Davis
, and
R. G.
Macaulay-Newcombe
,
J. Nucl. Mater.
360
,
196
(
2007
).
You do not currently have access to this content.