InGaN ternary alloys have been studied with photoluminescence, photoluminescence excitation spectroscopy, scanning electron microscopy, and cathodoluminescence spectroscopy. The relatively large Stokes shift observed in the photoluminescence and photoluminescence excitation spectroscopy has been found to be consistent with previous results reported in the literature. By correlating our experimental findings and others reported in the literature with those of scanning electron microscopy and cathodoluminescence spectroscopy, we conclude that the physical origin of the Stokes shift in InGaN ternary alloy system is primarily due to the effects of alloy composition fluctuations. A plausible model responsible for the observed Stokes shift is proposed.

1.
S.
Nakamura
,
J. Vac. Sci. Technol. A
13
,
705
(
1995
).
2.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
Y.
Sugimoto
, and
H.
Kiyoku
,
Appl. Phys. Lett.
70
,
1417
(
1997
).
3.
Chin-An
Chang
,
Chuan-Feng
Shih
,
Nai-Chuan
Chen
,
T. Y.
Lin
, and
Kuo-Shiun
Liu
,
Appl. Phys. Lett.
85
,
6131
(
2004
).
4.
K. P.
O’Donnell
,
R. W.
Martin
,
C.
Trager-Cowan
,
M. E.
White
,
K.
Esona
,
C.
Deatcher
,
P. G.
Middleton
,
K.
Jacobs
,
W.
van der Stricht
,
C.
Merlet
,
B.
Gil
,
A.
Vantomme
, and
J. F. W.
Mosselmans
,
Mater. Sci. Eng., B
82
,
194
(
2001
).
5.
S.
Pereira
,
M. R.
Correia
,
T.
Monteiro
,
E.
Pereira
,
E.
Alves
,
A. D.
Sequeira
, and
N.
Franco
,
Appl. Phys. Lett.
78
,
2137
(
2001
).
6.
W.
Shan
,
W.
Walukiewicz
,
E. E.
Haller
,
B. D.
Little
,
J. J.
Song
,
M. D.
McCluskey
,
N. M.
Johnson
,
Z. C.
Feng
,
M.
Schurman
, and
R. A.
Stall
,
J. Appl. Phys.
84
,
4452
(
1998
).
7.
K. P.
O’Donnell
,
R. W.
Martin
,
S.
Pereira
,
A.
Bangura
,
M. E.
White
,
W.
van der Stricht
, and
K.
Jacobs
,
Phys. Status Solidi B
216
,
141
(
1999
).
8.
S. X.
Li
,
E. E.
Haller
,
K. M.
Yu
,
W.
Walukiewicz
,
J. W.
Ager
 III
,
J.
Wu
,
W.
Shan
,
Hai
Lu
, and
William J.
Schaff
,
Appl. Phys. Lett.
87
,
161905
(
2005
).
9.
Bo-Ting
Liou
,
Cheng-Yang
Lin
,
Sheng-Horng
Yen
, and
Yen-Kuang
Kuo
,
Opt. Commun.
249
,
217
(
2005
).
10.
T. D.
Veal
,
L. F. J.
Piper
,
M. R.
Phillips
,
M. H.
Zareie
,
Hai
Lu
,
W. J.
Schaff
, and
C. F.
McConville
,
Phys. Status Solidi A
203
,
85
(
2006
).
11.
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
, and
J. W.
Ager
 III
,
Appl. Phys. Lett.
80
,
4741
(
2002
).
12.
S.
Chichibu
,
T.
Azuhata
,
T.
Sota
, and
S.
Nakamura
,
Appl. Phys. Lett.
70
,
2822
(
1997
).
13.
H.
Lu
,
W. J.
Schaff
,
J.
Hwang
,
H.
Wu
,
G.
Koley
, and
L. F.
Eastman
,
Appl. Phys. Lett.
79
,
1489
(
2001
).
14.
K.
Kazlauskas
,
G.
Tamulatitis
,
P.
Pobedinskas
,
A.
Zukauskas
,
M.
Springis
,
Chi-Feng
Huang
,
Yung-Chen
Chen
, and
C. C.
Yang
,
Phys. Rev. B
71
,
085306
(
2005
).
15.
P. G.
Eliseev
,
Piotr
Perlin
,
Jinhyun
Lee
, and
Marek
Osiski
,
Appl. Phys. Lett.
71
,
569
(
1997
).
16.
S.
Chichibu
,
T.
Azuhata
,
T.
Sota
, and
S.
Nakamura
,
Appl. Phys. Lett.
69
,
4188
(
1996
).
17.
H. J.
Chang
,
C. H.
Chen
,
Y. F.
Chen
,
T. Y.
Lin
,
L. C.
Chen
,
K. H.
Chen
, and
Z. H.
Lan
,
Appl. Phys. Lett.
86
,
021911
(
2005
).
You do not currently have access to this content.