Metastable pseudomorphic Si0.83Ge0.17 with thickness of 135nm was deposited on (001) Si substrate by molecular beam epitaxy and amorphized to a depth of 360nm, using 3×1015cm2 Ge ions at 270keV. Samples were regrown by solid phase epitaxy in the 500600°C temperature range. The regrowth rate was measured in situ by time resolved reflectivity, while the structure of the epilayers was investigated by transmission electron microscopy. Three regions can be distinguished in SiGe after solid phase epitaxy, independent of the annealing temperature: (1) a 20nm defect-free layer close to the original crystal-amorphous interface, (2) a middle region with a high density of planar defects, and (3) a layer with dislocations and stacking faults extending up to the surface. The activation energy of the SiGe solid phase epitaxy is equal to the activation energy of Si except in the middle region. The amorphous-crystal interface evolution was studied by transmission electron microscopy of partially regrown samples. In order to study the effects of dopants, some samples were also implanted with B+ and Sb+ ions. At the ion projected range (125nm for both implants) the regrowth rate increases by a factor of 3 with respect to the unimplanted SiGe, but the defect-free layer again is found to be about 20nm in all cases. Moreover, the activation energy of the solid phase epitaxy regrowth process does not depend on dopant introduction, while the only observable effect of B or Sb incorporation is a smoothness of the amorphous-crystal interface during solid phase epitaxy.

1.
R.
People
,
J. C.
Bean
,
D. V.
Lang
,
A. M.
Sergent
,
H. L.
Stormer
,
K. W.
Wecht
,
R. T.
Lynch
, and
K.
Baldwin
,
Appl. Phys. Lett.
45
,
1231
(
1984
).
2.
R.
People
and
J. C.
Bean
,
Appl. Phys. Lett.
48
,
538
(
1986
).
3.
E. A.
Fitzgerald
,
Y. H.
Xie
,
M. L.
Green
,
D.
Brasen
, and
A. R.
Kortan
,
Mater. Res. Soc. Symp. Proc.
220
,
211
(
1991
).
4.
C. G.
Tuppen
,
C. J.
Gibbings
, and
M.
Hockly
,
Mater. Res. Soc. Symp. Proc.
220
,
187
(
1991
).
5.
T.
Mizuno
,
N.
Sugiyama
,
H.
Satake
, and
S.-I.
Takagi
,
2000 Symposium of VLSI Circuits: Digest of Technical Papers
,
Honolulu, HI
, 15 July,
2000
, edited by IEEE Electron Devices Society, pp.
210
211
.
6.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
,
J. Appl. Phys.
97
,
011101
(
2005
).
7.
M. T.
Currie
,
S. B.
Samavedam
,
T. A.
Langdo
,
C. W.
Leitz
, and
E. A.
Fitzgerald
,
Appl. Phys. Lett.
72
,
1718
(
1998
).
8.
E.
Kasper
,
K.
Lyutovich
,
M.
Bauer
, and
M.
Oehme
,
Thin Solid Films
336
,
319
(
1998
).
9.
T. A.
Langdo
,
M. T.
Currie
,
A.
Lochtefeld
,
R.
Hammond
,
J. A.
Carlin
,
M.
Erdtmann
,
G.
Braithwaite
,
V. K.
Yong
,
C. J.
Vineis
, and
M. T.
Bulsara
,
Appl. Phys. Lett.
82
,
4256
(
2003
).
10.
M. S.
Phen
,
R. T.
Crosby
,
V.
Craciun
,
K. S.
Jones
,
M. E.
Law
,
J. L.
Hansen
, and
A. N.
Larsen
,
Mater. Res. Soc. Symp. Proc.
864
,
E4
28
(
2005
).
11.
W.
Vanderrvorst
,
T.
Janssens
,
B.
Brijs
,
R.
Delhougne
,
R.
Loo
,
M.
Caymsx
,
B. J.
Pawlak
, and
M.
Posselt
,
Appl. Phys. Lett.
86
,
081915
(
2005
).
12.
D. C.
Paine
,
N. D.
Evans
, and
N. G.
Stoffel
,
J. Appl. Phys.
70
,
4278
(
1991
).
13.
D. C.
Paine
,
D. J.
Howard
,
N. G.
Stoffel
, and
J. H.
Horton
,
J. Mater. Res.
5
,
1023
(
1990
).
14.
Q. Z.
Hong
,
J. Z.
Zhu
,
J. W.
Mayer
,
W.
Xia
, and
S. S.
Lau
,
J. Appl. Phys.
71
,
1768
(
1992
).
15.
C.
Lee
,
T. E.
Haynes
, and
K. S.
Jones
,
Appl. Phys. Lett.
62
,
501
(
1993
).
16.
G. L.
Olson
and
J. A.
Roth
,
Mater. Sci. Rep.
3
,
1
(
1988
).
17.
T. E.
Haynes
,
M. J.
Antonell
,
C. A.
Lee
, and
K. S.
Jones
,
Phys. Rev. B
51
,
7762
(
1995
).
18.
P.
Kringhøj
and
R. G.
Elliman
,
Phys. Rev. Lett.
73
,
858
(
1994
).
19.
F.
Spaepen
and
D.
Turnbull
,
AIP Conf. Proc.
50
,
73
(
1979
).
20.
K. Y.
Suh
and
H. H.
Lee
,
J. Appl. Phys.
80
,
6716
(
1996
).
21.
F.
Corni
,
S.
Frabboni
,
R.
Tonini
,
G.
Ottaviani
, and
G.
Queirolo
,
J. Appl. Phys.
79
,
3528
(
1996
).
22.
D. Y. C.
Lie
,
N. D.
Theodore
,
J. H.
Song
, and
M. A.
Nicolet
,
J. Appl. Phys.
77
,
5160
(
1995
).
23.
S. Q.
Hong
,
Q. Z.
Hong
, and
J. W.
Mayer
,
J. Appl. Phys.
72
,
3821
(
1992
).
24.
M. J.
Antonell
,
K. S.
Jones
, and
T. E.
Haynes
,
J. Appl. Phys.
79
,
7646
(
1996
).
25.
S. Q.
Hong
,
Q. Z.
Hong
, and
J. W.
Mayer
,
Appl. Phys. Lett.
63
,
2053
(
1993
).
26.
Z.
Atzmon
,
M.
Eizenberg
,
Y.
Shacham-Diamand
,
J. W.
Mayer
, and
F.
Schäffler
,
J. Appl. Phys.
75
,
3936
(
1994
).
27.
W.
Barvosa-Carter
,
M. J.
Aziz
,
A.-V.
Phan
,
T.
Kaplan
, and
L. J.
Gray
,
J. Appl. Phys.
96
,
5462
(
2004
).
28.
G. M. W.
Kroesen
,
G. S.
Oehrlein
,
E.
De Frésart
, and
G. J.
Scilla
,
Appl. Phys. Lett.
60
,
1351
(
1992
).
29.
J. C. G.
de Sande
,
A.
Rodríguez
, and
T.
Rodríguez
,
Appl. Phys. Lett.
67
,
3402
(
1995
).
30.
J.
Humlícek
and
M.
Garriga
,
Appl. Phys. A: Solids Surf.
56
,
259
(
1993
).
31.
S. U.
Campisano
,
J. M.
Gibson
, and
J. M.
Poate
,
Appl. Phys. Lett.
46
,
580
(
1985
).
32.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping Range of Ions in Solids
(
Pergamon
,
New York
,
1985
).
33.
C.
Licoppe
,
Y. I.
Nissim
, and
P.
Henoc
,
Appl. Phys. Lett.
48
,
1441
(
1986
).
34.
X.
Zeng
,
T.-C.
Lee
,
J.
Silcox
, and
M. O.
Thompson
,
Mater. Res. Soc. Symp. Proc.
321
,
503
(
1994
).
35.
J. S.
Williams
,
R. G.
Elliman
,
W. L.
Brown
, and
T. E.
Seidel
,
Phys. Rev. Lett.
55
,
1482
(
1985
).
You do not currently have access to this content.