Composite ZnOCeO2 thin films were grown epitaxially on r-sapphire substrates using the pulsed laser deposition technique. Their crystalline properties were established using x-ray diffraction and showed the ZnO (wurtzite structure) and CeO2 (fluorite structure) layers to be highly textured with the (2023) and (100) orientations, respectively. ϕ-scan measurements were also carried out and the (2023)ZnO(100CeO2), [1210]ZnO011CeO2 epitaxial relations established. The rocking curve profiles indicated that the ZnO films grew as four crystallographically equivalent domains. Series of rocking curve and χscan measurements at varying ϕ angles, respectively, were used to investigate the domain structure. These showed that the normal to the (2023) plane in each domain is tilted away from the substrate normal towards one of the four equivalent CeO2 ⟨111⟩ directions by 1.60. Atomic force microscopy measurements showed that the ZnOCeO2 composite film has a granular microstructure with a rough surface (typical root mean square roughness of 7.9nm). Low temperature photoluminescence spectra showed an intense near-band-edge emission at a photon energy of 3.361eV, with a full width at half maximum of 1.8meV, testifying to the good optical quality of the ZnO material. The optical transmission of the ZnOCeO2 composite film was measured in the 2001000nm spectral domain; it was completely opaque to UV radiation and became transparent with a sharp transition above 380nm. Secondary ion mass spectrometry measurements were used for depth profiling of the ZnOCeO2 composite structure. The corresponding data suggest that the CeO2 buffer layer acts as an efficient barrier against the diffusion of aluminum from the sapphire substrate into the ZnO layer.

1.
S. J.
Pearton
,
D. P.
Norton
,
K.
Ip
,
Y. W.
Heo
, and
T.
Steiner
,
Prog. Mater. Sci.
50
,
293
(
2005
).
2.
A.
Tsukazaki
 et al,
Nat. Mater.
4
,
42
(
2005
).
3.
P.
Fons
 et al,
Phys. Rev. Lett.
96
,
045504
(
2006
).
4.
Y. J.
Li
 et al,
Semicond. Sci. Technol.
20
,
720
(
2005
).
5.
D. J.
Rogers
,
F.
Hosseini Teherani
 et al,
Appl. Phys. Lett.
88
,
141918
(
2006
).
6.
Y.
Chen
,
H.-J.
Ko
,
S.-K.
Hong
, and
T.
Yao
,
Appl. Phys. Lett.
76
,
559
(
2000
).
7.
A.
Tsukazaki
 et al,
Appl. Phys. Lett.
83
,
2784
(
2003
).
8.
C. R.
Gorla
,
W. E.
Mayo
,
S.
Liang
, and
Y.
Lu
,
J. Appl. Phys.
87
,
3736
(
2000
).
9.
X. D.
Wu
,
R. C.
Dye
,
R. E.
Muenchausen
,
S. R.
Foltyn
,
M.
Maley
,
A. D.
Rollett
,
A. R.
Garcia
, and
N. S.
Nogar
,
Appl. Phys. Lett.
58
,
2165
(
1991
).
10.
X.
Castel
,
M.
Guilloux-Viry
,
A.
Perrin
,
J.
Lesueur
, and
F.
Lalu
,
J. Cryst. Growth
187
,
211
(
1998
).
11.
S.
Chromik
,
M.
Spankova
,
I.
Vavra
,
S.
Gazi
,
M.
Cannaerts
,
L.
Hellemans
,
D.
Machajdık
, and
S.
Benacka
,
Acta Phys. Slov.
50
,
403
(
2000
).
12.
C.
Chariditis
,
P.
Patsalas
, and
S.
Logothetidis
,
J. Phys.: Conf. Ser.
10
,
226
(
2005
).
13.
M.
Yamashita
,
K.
Kameyama
,
S.
Yabe
,
S.
Yoshhida
,
Y.
Fujishiro
,
T.
Kawai
, and
T.
Sato
,
J. Mater. Sci.
37
,
683
(
2002
).
14.
C.
Peverari
,
A. M.
Pires
,
R. R.
Gonçalves
, and
O. A.
Serra
,
Ecletica Quim.
30
,
59
(
2005
).
15.
J.-R.
Duclère
 et al,
J. Mater. Sci.: Mater. Electron.
16
,
421
(
2005
).
16.
J.-R.
Duclère
 et al,
Thin Solid Films
500
,
78
(
2006
).
17.
B. E.
Warren
,
X-ray Diffraction
(
Dover
,
New York
,
1990
).
18.
The structural data for ZnO and CeO2 are taken from International Center for Diffraction Data (ICDD, http://www.icdd.com) as follows: ZnO, Powder Diffraction File (PDF) 36-1451 (unpublished) (a=0.324982nm, c=0.520661nm, ca=1.602); CeO2, PDF 34-0394 (unpublished) (d=0.541 134 nm).
19.
A.
Boulle
,
R.
Guinebretière
, and
A.
Dauger
,
J. Phys. D
38
,
3907
(
2005
).
20.
H.
Seifert
, in
Structure and Properties of Solid Surfaces
, edited by
R.
Gomer
and
C. S.
Smith
(
The University of Chicago Press
,
Chicago
,
1953
), Chap. 9, pp.
344
347
.
21.
B. K.
Meyer
 et al,
Phys. Status Solidi B
241
,
231
(
2004
).
You do not currently have access to this content.