The significance of ion impact and radical species density on ash-induced modification of an extreme ultralow-κ interlevel dielectric (ILD) material (κ<2.0) in a patterned single damascene structure exposed to ArO2 and ArN2 dual frequency capacitive discharges is determined by combining plasma diagnostics, modeling of the ion angular distribution function, and material characterization such as angle resolved x-ray photoelectron spectroscopy. Radical species density was determined by optical emission actinometry under the same conditions and in the same reactor in a previous study by the present authors. ILD modification is observed and correlated with changes in the plasma for a range of pressures (560mTorr), bias powers (0350W), and percent Ar in the source gas (0%, 85%). For the ArO2 discharge, extensive modification of the ILD sidewall was observed for significant ion scattering conditions, whereas minimal modification of the ILD sidewall was observed under conditions of minimal or no ion scattering. Further, for an identical increase in the O-radical density (∼ an order of magnitude), a different degree of modification was induced at the ILD trench bottom surface depending on whether pressure or percent Ar was used to increase the radical density. The different degrees of modification seemingly correlated with the relative changes in the ion current for increasing pressure or percent Ar. For the ArN2 discharge, reduced damage of the ILD sidewall and trench bottom surfaces was observed for increasing pressure (increasing N-radical density) and decreasing ion current to both surfaces. It is, thus, proposed that the mechanism for modification of the porous ILD is dominated by the creation of reactive sites by ion impact under the present conditions. A detailed discussion of the results which support this proposal is presented.

1.
International Technology Roadmap for Semiconductors
(ITRS) (
Santa Clara
, CA,
2005
).
2.
P.-T.
Liu
,
T.-C.
Chang
,
Y.-S.
Mor
, and
S. M.
Sze
,
Jpn. J. Appl. Phys., Part 1
38
,
3482
(
1999
).
3.
T. C.
Chang
 et al.,
J. Electrochem. Soc.
146
,
3802
(
1999
).
4.
T. C.
Chang
,
Y. S.
Mor
,
P. T.
Liu
,
T. M.
Tsai
,
C. W.
Chen
,
Y. J.
Mei
, and
S. M.
Sze
,
Thin Solid Films
398/399
,
632
(
2001
).
5.
D.
Shamiryan
,
M. R.
Baklanov
,
S.
Vanhaelemeersch
, and
K.
Maex
,
J. Vac. Sci. Technol. B
20
,
1923
(
2002
).
6.
M. A.
Worsley
,
S. F.
Bent
,
S. M.
Gates
,
K.
Kumar
,
T.
Dalton
, and
J. C.
Hedrick
,
Mater. Res. Soc. Symp. Proc.
766
,
235
(
2003
).
7.
O.
Louveau
,
C.
Bourlot
,
A.
Marfoure
,
I.
Kalinovski
,
J.
Su
,
G.
Hills
, and
D.
Louis
,
Microelectron. Eng.
73/74
,
351
(
2004
).
8.
M. A.
Worsley
,
S. F.
Bent
,
S. M.
Gates
,
N. C. M.
Fuller
,
W.
Volksen
,
M.
Steen
, and
T.
Dalton
,
J. Vac. Sci. Technol. B
23
,
395
(
2005
).
9.
Y. H.
Wang
,
R.
Kumar
,
X.
Zhou
,
J. S.
Pan
, and
J. W.
Chai
,
Thin Solid Films
473
,
132
(
2005
).
10.
H. W.
Kim
,
J. H.
Myung
,
N. H.
Kim
,
C. W.
Chung
,
W. J.
Park
,
C. J.
Kang
,
C. G.
Yoo
, and
D. K.
Choi
,
Vacuum
80
,
193
(
2005
).
11.
N. C. M.
Fuller
 et al.,
Proceedings of the ECS 2005 International Semiconductor Technology Conference
,
Shanghai, China
, 15–17 March
2005
p.
299
.
12.
T. J.
Dalton
 et al.,
IEEE 2004 International Interconnect Technology Conference
,
Burlingame, CA
, June 7–9
2004
p.
154
.
13.
M. A.
Worsley
,
S. F.
Bent
,
N. C. M.
Fuller
, and
T.
Dalton
,
J. Appl. Phys.
100
,
083301
(
2006
).
14.
J. L.
Hedrick
,
R. D.
Miller
,
C. J.
Hawker
,
K. R.
Carter
,
W.
Volksen
,
D. Y.
Yoon
, and
M.
Trollsas
,
Adv. Mater. (Weinheim, Ger.)
10
,
1049
(
1998
).
15.
J. A.
Hedstrom
,
M. F.
Toney
,
E.
Huang
,
H. C.
Kim
,
W.
Volksen
,
T.
Magbitang
, and
R. D.
Miller
,
Langmuir
20
,
1535
(
2004
).
16.
H. C.
Kim
 et al.,
Chem. Mater.
14
,
4628
(
2002
).
17.
Q. R.
Huang
,
W.
Volksen
,
E.
Huang
,
M.
Toney
,
C. W.
Frank
, and
R. D.
Miller
,
Chem. Mater.
14
,
3676
(
2002
).
18.
E. F.
Connor
 et al.,
Angew. Chem., Int. Ed.
42
,
3785
(
2003
).
19.
J. L.
Hedrick
,
T.
Magbitang
,
E. F.
Connor
,
T.
Glauser
,
W.
Volksen
,
C. J.
Hawker
,
V. Y.
Lee
, and
R. D.
Miller
,
Chem.-Eur. J.
8
,
3308
(
2002
).
20.
E.
Huang
 et al.,
Appl. Phys. Lett.
81
,
2232
(
2002
).
21.
G. S.
Oehrlein
,
K. K.
Chan
, and
M. A.
Jaso
,
J. Appl. Phys.
64
,
2399
(
1988
).
22.
E. W.
McDaniel
,
J. B. A.
Mitchell
, and
M. E.
Rudd
,
Atomic Collisions: Heavy Particle Projectiles
(
Wiley-Interscience
,
New York
,
1993
).
23.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
,
New York
,
1994
).
24.
N. C. M.
Fuller
,
I. P.
Herman
, and
V. M.
Donnelly
,
J. Appl. Phys.
90
,
3182
(
2001
).
25.
H. C.
Straub
,
P.
Renault
,
B. G.
Lindsay
,
K. A.
Smith
, and
R. F.
Stebbings
,
Phys. Rev. A
52
,
1115
(
1995
).
26.
H. C.
Straub
,
P.
Renault
,
B. G.
Lindsay
,
K. A.
Smith
, and
R. F.
Stebbings
,
Phys. Rev. A
54
,
2146
(
1996
).
You do not currently have access to this content.