Emission characteristics from GaAlAs–GaAs–GaAlAs Gunn devices of different lengths placed in Fabry-Pérot cavities have been investigated. The emission from the device of length of 194μm is stimulated in nature, whereas for the other two devices of lengths of 100 and 50μm, the emission is spontaneous. Lasing action in such devices, when biased above the threshold of negative differential resistance, arises from the band to band recombination of impact-ionized nonequilibrium electron hole pairs created within the propagating high field Gunn domains. Quantitative results evaluated using nonequilibrium semiconductor-statistics show that reduction in the length of the device leads to (a) a shift of the gain peak towards higher energies and (b) an increase in the average nonequilibrium carrier temperature. As a result, lasing in very short devices is inhibited and only ultra-bright-spontaneous emission is observed.

1.
P. D.
Southgate
,
J. Appl. Phys.
38
,
4589
(
1967
).
2.
P. D.
Southgate
,
IEEE J. Quantum Electron.
QE-4
,
179
(
1968
).
3.
B. L.
Gelmont
and
M. S.
Shur
,
Electron. Lett.
6
,
531
(
1970
).
4.
V. Yu.
Sudzilovskii
,
Sov. Phys. Semicond.
7
,
462
(
1973
).
5.
V. M.
Arutyunyan
and
A. G.
Varosyan
,
Sov. Phys. Semicond.
11
,
167
(
1977
).
6.
N.
Balkan
and
M.
Hostut
,
Physica B
272
,
291
(
1999
).
7.
M.
Hostut
, Ph.D. thesis,
The University of Essex
,
1999
.
8.
S.
Chung
,
A.
Boland-Thomas
,
J. Y.
Wah
,
N.
Balkan
, and
B. K.
Ridley
,
Semicond. Sci. Technol.
19
,
S400
(
2004
).
9.
S.
Chung
,
A.
Boland-Thomas
,
J. Y.
Wah
,
N.
Balkan
,
B. K.
Ridley
, and
J. S.
Roberts
,
Phys. Status Solidi C
2
,
3010
(
2005
).
10.
S.
Chung
and
N.
Balkan
,
IEE Proc.: Optoelectron.
153
,
84
(
2006
).
11.
S.
Chung
and
N.
Balkan
,
Appl. Phys. Lett.
86
,
211111
(
2005
).
12.
B. K.
Ridley
,
Semicond. Sci. Technol.
3
,
542
(
1988
).
13.
B. K.
Ridley
,
New Sci.
300
,
352
(
1964
).
14.
P. P.
Bohn
and
G. J.
Herskowitz
,
IEEE Trans. Electron Devices
ED-19
,
14
(
1972
).
15.
J. T.
Verdeyen
,
Laser Electronics
, 3rd ed. (
Prentice Hall
,
New Jersey
,
1995
), p.
152
.
16.
R. N.
Hall
,
Proc. Inst. Electr. Eng.
,
106B
,
923
(
1960
).
17.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
New York
,
1990
), p.
361
.
18.
Y. P.
Varshni
,
Phys. Status Solidi
19
,
459
(
1967
).
19.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
), p.
850
.
20.
S.
Chung
, Ph.D. thesis, The University of Essex, 2005.
21.
L. A.
Coldren
and
S. W.
Corzine
,
Diode Lasers and Photonic Integrated Circuits
(
Wiley
,
New York
,
1995
), p.
39
.
22.
L. A.
Coldren
and
S. W.
Corzine
,
Laser Diodes and Photonic Integrated Circuits
(
Wiley
,
New York
,
1995
), p.
131
.
23.
C.
Hermann
and
C.
Weisbuch
,
Phys. Rev. B
,
15
,
823
(
1977
).
24.
L. A.
Coldren
and
S. W.
Corzine
, in
Laser Diodes and Photonic Integrated Circuits
(
Wiley
,
New York
,
1995
), p.
125
.
25.
D. T. F.
Marple
,
J. Appl. Phys.
35
,
1241
(
1964
).
26.
B. O.
Seraphin
and
H. E.
Bennett
, in
Semiconductors and Semimetals
, edited by
R. K.
Willarson
and
A. C.
Beer
(
Academic
,
New York
,
1967
), Vol.
3
, p.
499
.
27.
W. W.
Chow
,
S. W.
Koch
, and
M.
Sargent
 III
,
Semiconductor-Laser Physics
(
Springer-Verlag
,
Berlin
,
1994
), p.
95
.
28.
N.
Balkan
and
M.
Hostut
,
Physica B
272
,
291
(
1999
).
29.
P. S.
Zory
,
Quantum Well Lasers
(
Academic
,
San Diego
,
1993
), Chap. 1.
You do not currently have access to this content.