We demonstrate that the chemical composition of the sputtered CuCl thin films could be finely controlled by adjusting the bias to the substrate. The films deposited without any intentional bias were Cl rich (CuCl1+x), a bias of 22V yielded stoichiometric CuCl, and a further increase in the negative bias resulted in Cl deficient films (CuCl1x). The crystalline and optical properties were found to be associated with the chemical composition. Cl rich films showed a deep level green emission at around 515nm in addition to ultraviolet (UV) excitonic emission. The stoichiometric films have higher optical quality, exhibiting a sharp UV emission at around 385nm at room temperature, compared to nonstoichiometric samples. Visible luminescence related to deep level defects was not observed in the stoichiometric films. Changes in energy of the flux from the target and the subsequent ion bombardment on the substrate surface are correlated with the variations in chemical composition and their impact on the film microstructure and UV emission.

1.
S.
Nakamura
,
T.
Mukai
, and
M.
Senoh
,
Appl. Phys. Lett.
64
,
1687
(
1994
).
2.
M. H.
Huang
 et al,
Science
292
,
1897
(
2001
).
3.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Appl. Phys., Part 2
35
,
L74
(
1996
).
4.
M.
Nakayama
,
H.
Ichida
, and
H.
Nishimura
,
J. Phys.: Condens. Matter
11
,
7653
(
1999
).
5.
W.
Chen
,
M.
Dumas
,
S.
Ahsan
,
A.
Kahn
,
C. B.
Duke
, and
A.
Patton
,
J. Vac. Sci. Technol. A
10
,
2071
(
1992
);
A.
Yanase
and
Y.
Segawa
,
Surf. Sci.
357–358
,
885
(
1996
);
E.
Vanagas
,
D.
Brinkmann
,
J.
Kudrna
,
O.
Crégut
,
P.
Gilliot
,
R.
Tomasiunas
, and
B.
Hönerlage
,
J. Phys.: Condens. Matter
14
,
3627
(
2002
);
R. S.
Williams
,
D. K.
Shuh
, and
Y.
Segawa
,
J. Vac. Sci. Technol. A
6
,
1950
(
1988
);
N.
Nishida
,
K.
Saiki
, and
A.
Koma
,
Surf. Sci.
324
,
149
(
1995
);
G. R.
Olbright
and
N.
Peyghamberian
,
Solid State Commun.
58
,
333
(
1986
).
6.
R. S.
Williams
and
D. K.
Shuh
,
J. Vac. Sci. Technol. A
8
,
1950
(
1988
).
7.
F. O.
Lucas
 et al,
J. Cryst. Growth
28
,
112
(
2006
).
8.
L.
O’Reilly
 et al,
J. Appl. Phys.
98
,
113512
(
2005
);
L.
O’Reilly
 et al,
J. Mater. Sci.: Mater. Electron.
16
,
415
(
2005
).
9.
G.
Natarajan
 et al,
J. Appl. Phys.
100
,
033520
(
2006
);
G.
Natarajan
 et al,
Mater. Res. Soc. Symp. Proc.
891
,
0891
EE03
22
1
(
2005
).
10.
J.
Chastain
,
Handbook of X-ray Photoelectron Spectroscopy
(
Physical Electronics Inc.
,
Minnesota
,
1992
).
11.
B. D.
Cullity
,
Elements of X-Ray Diffraction
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1978
).
12.
B.
Lin
,
Z.
Fu
, and
Y.
Jia
,
Appl. Phys. Lett.
79
,
943
(
2001
);
X.
Liu
,
X.
Wu
,
H.
Cao
, and
R. P. H.
Chang
,
J. Appl. Phys.
95
,
3141
(
1998
);
T.
Koida
,
S. F.
Chichibu
,
A.
Uedono
,
A.
Tsukazaki
,
M.
Kawasaki
,
T.
Sota
,
Y.
Segawa
, and
H.
Koinuma
,
Appl. Phys. Lett.
82
,
532
(
2003
).
13.
D. C.
Reynolds
,
D. C.
Look
, and
B.
Jogai
,
J. Appl. Phys.
89
,
6189
(
2001
);
E. G.
Bylander
,
J. Appl. Phys.
49
,
1188
(
1978
);
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
,
J. Appl. Phys.
79
,
7983
(
1996
);
M.
Liu
,
A. H.
Kitai
, and
P.
Mascher
,
J. Lumin.
54
,
35
(
1992
).
14.
A.
Keudell
,
Plasma Sources Sci. Technol.
9
,
455
(
2000
).
You do not currently have access to this content.