We report the growth of thin pseudomorphic GaAs1xSbx(x0.3) quantum-well heterostructures by metal-organic chemical vapor deposition and the measurement of the band lineups for the heterointerface of GaAs1xSbx(x0.3) quantum wells with GaAs, GaAs0.86P0.14, and In0.5Ga0.5P quantum-well barriers for 80Å double-quantum-well heterostructures using excitation-dependent cathodoluminescence measurements at 10K. GaAs1xSbx(x0.3) quantum wells with GaAs and GaAs0.86P0.14 barriers show type-II band alignment, while GaAs1xSbx(x0.3) quantum wells with In0.5Ga0.5P barriers exhibit a type-I band lineup. The type-I/type-II band alignment boundary condition as a function of the GaAs1xSbx quantum-well composition and of the barrier materials and compositions is calculated. The pseudomorphic GaAs1xSbxGaAs quantum-well heterointerface is estimated to have a type-II alignment. For GaAs1xSbxGaAsP and GaAs1xSbxInGaP heterostructures, both type-I and type-II alignments can occur depending on the quantum-well and barrier compositions. As the Sb composition of the quantum well increases, higher P alloy composition (in GaAsP barriers) and Ga (in InGaP barriers) composition are required in order to make the type-II to type-I transition.

1.
M.
Peter
,
R.
Kiefer
,
F.
Fuchs
,
N.
Herres
,
K.
Winkler
,
K. H.
Bachem
, and
J.
Wagner
,
Appl. Phys. Lett.
74
,
1951
(
1999
).
2.
Y. H.
Zhang
,
Appl. Phys. Lett.
66
,
118
(
1995
).
3.
D. L.
Smith
and
C.
Mailhiot
,
J. Appl. Phys.
62
,
2545
(
1987
).
4.
M.
Kondow
,
T.
Kitani
,
S.
Nakatsuka
,
M. C.
Larson
,
K.
Nakahara
,
Y.
Yahzawa
, and
M.
Okai
,
IEEE J. Sel. Top. Quantum Electron.
3
,
719
(
1997
).
5.
D. L.
Huffaker
,
G.
Park
,
Z.
Zou
,
O. B.
Shchekin
, and
D. G.
Deppe
,
Appl. Phys. Lett.
73
,
2564
(
1998
).
6.
M.
Yamada
,
T.
Anan
,
K.
Tokutome
,
A.
Kamei
,
K.
Nishi
, and
S.
Sugou
,
IEEE Photonics Technol. Lett.
12
,
1598
(
2000
).
7.
T.
Anan
,
M.
Yamada
,
K.
Nishi
,
K.
Kurihara
,
K.
Tokutome
,
A.
Kamei
, and
S.
Sugou
,
Electron. Lett.
37
,
566
(
2001
).
8.
G.
Liu
,
S. L.
Chang
, and
S. H.
Park
,
J. Appl. Phys.
88
,
5554
(
2000
).
9.
G.
Ji
,
S.
Agarwala
,
D.
Huang
, and
H.
Morkoc
,
Phys. Rev. B
38
,
10571
(
1988
).
10.
R.
Tessier
,
D.
Sicault
,
J. C.
Harmand
,
G.
Ungaro
,
G.
Le Roux
, and
L.
Largeau
,
J. Appl. Phys.
89
,
5473
(
2001
).
11.
M.
Peter
,
J.
Forker
,
K.
Winkler
,
K. H.
Bachem
, and
J.
Wagner
,
J. Electron. Mater.
24
,
1551
(
1995
).
12.
A. D.
Prins
,
D. J.
Dunstan
,
J. D.
Lambkin
,
E. P.
O’Reilly
, and
A. R.
Adams
,
Phys. Rev. B
47
,
2191
(
1993
).
13.
M. S.
Noh
, Ph.D. dissertation,
The University of Texas at Austin
,
2003
.
14.
M. S.
Noh
,
R. D.
Dupuis
,
D. P.
Bour
,
G.
Walter
, and
N.
Holonyak
, Jr.
,
Appl. Phys. Lett.
94
,
2530
(
2003
).
15.
Metal organic source is obtained from Epichem Inc., Hapeville, PA.
16.
M. J.
Cherng
,
R. M.
Cohen
, and
G. B.
Stringfellow
,
J. Electron. Mater.
13
,
799
(
1984
).
17.
J.
Singh
,
Physics of Semiconductors and Their Heterostructures
(
McGraw-Hill
,
New York
,
1993
), pp.
190
194
.
18.
S. L.
Chuang
,
Physics of Optoelectronic Devices
(
Wiley
,
New York
,
1995
), pp.
147
154
.
19.
R. L.
Anderson
,
Solid-State Electron.
5
,
341
(
1962
).
20.
C. G.
van de Walle
and
R. M.
Matin
,
Phys. Rev. B
34
,
5621
(
1986
).
21.
G.
Liu
,
S.-L.
Chuang
, and
S.-H.
Park
,
J. Appl. Phys.
88
,
5554
(
2000
).
22.
A.
Ichii
,
Y.
Tsou
, and
E.
Garmire
,
J. Appl. Phys.
74
,
2112
(
1993
).
23.
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology
, New Series, Condensed matter (Group III), Vol.
22
, edited
O.
Madelung
(
Springer-Velag
,
Berlin
,
1982
).
24.
A.
Ichii
,
Y.
Tsou
, and
E.
Garminre
,
J. Appl. Phys.
74
,
2112
(
1993
).
25.
R. E.
Nahory
,
M. A.
Pollack
,
J. C.
DeWinter
, and
K. M.
Williams
,
J. Appl. Phys.
48
,
1607
(
1977
).
You do not currently have access to this content.