Ion attachment mass spectrometry was used for continuous in situ analysis of coordinated products formed during copper chemical vapor deposition (Cu CVD) by Cu(1,1,1,5,5,5-hexafluoroacetylacetonate)(vinyltrimethylsilane) [Cu(hfac)(tmvs)] in a simple tubular reactor. This study of the thermally labile Cu(hfac)(tmvs) demonstrated the utility of this method for detecting molecular ions of labile compounds. The results demonstrate the feasibility of monitoring the deposition chemistry of Cu(hfac)(tmvs) by generating Li+ adduct molecular ions by means of the Li+ ion attachment technique. The reaction pathways for Cu CVD by Cu(hfac)(tmvs) were studied by analysis of the reaction products. H(hfac) and tmvs were identified as the main products when Cu(hfac)tmvs was heated at temperatures ranging from room temperature to 160°C in the reactor. The rate constant for Cu deposition, k(1s), was determined to be 1.6×106exp(10.2kcalmolRt).

1.
L.
Jian
,
H.
Stella
,
S.
Russell
, and
J. W.
Mayer
, in
Crucial Issues in Semiconductor Materials and Processing Technologies
edited by
S.
Coffa
,
F.
Priolo
,
E.
Rimini
, and
J. M.
Poate
NATO Advanced Studies Institute, Series E: Applied Sciences
, Vol.
222
, (
Kluwer
,
Dordrecht
,
1992
), p.
305
.
2.
C. K.
Hu
and
J. M.
Harper
,
Mater. Chem. Phys.
52
,
5
(
1998
).
3.
D.
Kim
,
R. H.
Wentorf
, and
W. N.
Gill
,
J. Electrochem. Soc.
140
,
3273
(
1993
).
4.
S. K.
Lakshmanan
and
W. N.
Gill
,
Thin Solid Films
338
,
24
(
1999
).
5.
V. M.
Donnelly
and
M. E.
Gross
,
J. Vac. Sci. Technol. A
11
,
66
(
1993
).
6.
S. L.
Cohen
,
M.
Liehr
, and
S.
Kasi
,
Appl. Phys. Lett.
60
,
1585
(
1992
).
7.
P. J.
Lin
and
M. C.
Chen
,
Jpn. J. Appl. Phys., Part 1
38
,
4863
(
1999
).
8.
S. K.
Reynolds
,
C. J.
Smart
, and
E. F.
Baran
,
Appl. Phys. Lett.
59
,
2332
(
1991
).
9.
Y. K.
Chae
,
Y.
Shimogaki
, and
H.
Komiyama
,
J. Electrochem. Soc.
145
,
4226
(
1998
).
10.
D.
Kim
,
R. H.
Wentorf
, and
W. N.
Gill
,
J. Electrochem. Soc.
140
,
3267
(
1993
).
11.
K. C.
Lin
,
C.
Marcadal
,
S.
Gauguile
,
B.
Zheng
,
J.
Schmitt
, and
L.
Chen
,
Proceedings of the Advanced Semiconductor Manufacturing Conference
,
1999
, p.
440
.
12.
B.
Zheng
 et al.,
Mater. Chem. Phys.
41
,
173
(
1995
).
13.
M. B.
Naik
,
W. N.
Gill
,
R. H.
Wentorf
, and
R. R.
Reeves
,
Thin Solid Films
262
,
60
(
1995
).
14.
T.
Fujii
M.
Ogura
, and
H.
Jimba
,
Anal. Chem.
61
,
1026
(
1989
).
15.
T.
Fujii
and
K.
Syouji
,
Phys. Rev. A
46
,
3555
(
1992
).
17.
T.
Fujii
and
M.
Kareev
,
J. Appl. Phys.
89
,
2543
(
2001
).
18.
M.
Nakamura
,
K.
Hino
,
T.
Sasaki
,
Y.
Shiokawa
,
T.
Fujii
,
M.
Takayanagi
, and
M.
Nakata
,
J. Vac. Sci. Technol. A
22
,
2347
(
2004
).
19.
T.
Fujii
,
S.
Arulmozhiraja
,
M.
Nakamura
, and
Y.
Shiokawa
,
Anal. Chem.
73
,
2937
(
2001
).
20.
L. H.
Dubois
and
B. R.
Zegarski
,
J. Electrochem. Soc.
139
,
3295
(
1992
).
21.
J.
Farkas
,
M. J.
Hampden-Smith
, and
T. T.
Kodas
,
J. Electrochem. Soc.
141
,
3539
(
1994
).
22.
S.
Arulmozhiraja
and
T.
Fujii
,
Mol. Phys.
103
,
3293
(
2005
).
You do not currently have access to this content.