The effect of localized microwave absorption in conducting thin films had been simulated using a heat diffusion model to quantitatively evaluate the electrical voltage maps obtained recently using a near-field scanning microwave microprobe (NSMM) in combination with the I-V characterization. In the experiment, the focused microwave emitted from the NSMM at a sample spot of dimension comparable to the NSMM tip dimension changes the local resistivity of the sample via microwave heating. By measuring the voltage response while scanning the NSMM, nonuniformity in the electrical current distribution in the sample can be resolved. To quantitatively assess the effect of various parameters, a theoretical simulation of the temperature profile has been made and related to the voltage response profile obtained experimentally. The variation of the induced voltage due to microwave absorption with time, microwave input power, and the thickness of the film has also been studied and the simulation compares well with experiment. Discussions on discrepancies between simulation and experiment will also be presented.

1.
T. C.
Shields
,
K.
Kawano
,
T. W.
Button
, and
J. S.
Abell
,
Supercond. Sci. Technol.
15
,
99
(
2002
).
2.
D. M.
Feldmann
 et al,
Appl. Phys. Lett.
77
,
2906
(
2000
).
3.
V. A.
Maroni
 et al,
IEEE Trans. Appl. Supercond.
15
,
2798
(
2005
).
4.
G.
Karapetrov
,
V.
Cambel
,
W. K.
Kwok
,
R.
Nikolova
,
G. W.
Crabtree
,
H.
Sheng
, and
B. W.
Veal
,
J. Appl. Phys.
86
,
6282
(
1999
).
5.
A.
Crisan
,
A.
Pross
,
R. G.
Humphreys
, and
S.
Bending
,
Supercond. Sci. Technol.
16
,
695
(
2003
).
6.
A.
Sugimoto
,
T.
Yamaguchi
, and
I.
Iguchi
,
Appl. Phys. Lett.
77
,
3069
(
2000
).
7.
J. R.
Kirtley
 et al,
IBM J. Res. Dev.
39
,
655
(
1995
).
8.
P. J.
Rous
,
R.
Yongsunthon
,
A.
Stanishevsky
, and
E. D.
Williams
,
J. Appl. Phys.
95
,
2477
(
2004
).
9.
H. J.
Relttu
and
R.
Lalho
,
Supercond. Sci. Technol.
5
,
448
(
1992
).
10.
H. J.
Hug
,
B.
Stiefel
,
P. J. A.
van Schendel
,
A.
Moser
,
S.
Martin
, and
H. J.
Güntherodta
,
Rev. Sci. Instrum.
70
,
3625
(
1999
).
11.
A.
Marx
,
K.-D.
Husemann
,
B.
Mayer
,
T.
Nissel
, and
R.
Gross
,
Appl. Phys. Lett.
64
,
241
(
1993
).
12.
A. G.
Sivakov
,
A. V.
Lukashenko
,
D.
Abraimov
,
P.
Muller
,
A. V.
Ustinov
, and
M.
Leghissa
,
Appl. Phys. Lett.
76
,
2597
(
2000
).
13.
N.
Dieckmann
,
A.
Bock
, and
U.
Merkt
,
Appl. Phys. Lett.
68
,
3626
(
1996
).
14.
B. E.
Klein
,
S.
Seo
,
C.
Kwon
,
B. H.
Park
, and
Q. X.
Jia
,
Rev. Sci. Instrum.
73
,
3692
(
2002
).
15.
R. S.
Aga
, Jr.
,
X.
Wang
,
J.
Dizon
,
J.
Noffsinger
, and
J. Z.
Wu
,
Appl. Phys. Lett.
86
,
234101
(
2005
).
16.
R. S.
Aga
, Jr.
,
J.
Brookman
,
J.
Dizon
, and
J. Z.
Wu
,
Appl. Phys. Lett.
84
,
1979
(
2004
).
17.
E. A.
Ash
and
G.
Nichols
,
Nature (London)
237
,
510
(
1972
).
18.
A. C.
Metaxas
and
R. J.
Meredith
,
Industrial Microwave Heating
(
Peter Peregrinus Ltd.
,
London, U.K.
,
1983
), p.
100
.
19.
H.
Bosman
,
Y. Y.
Lau
, and
R. M.
Gilgenbach
,
Appl. Phys. Lett.
82
,
1353
(
2003
).
20.
Society for Amateur Scientist Archive, http://www.sas.org/engineerByProperty.html
21.
H. D.
Young
and
R. A.
Freedman
,
University Physics
, 9th ed. (
Addison-Wesley
,
Reading, MA
,
1996
), Table 15-5.
22.
G.
Libemann
,
Br. J. Appl. Phys.
1
,
92
(
1950
).
23.
D. C.
Giancoli
,
Physics
, 4th ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1995
).
25.
K. C.
Hewitt
,
P. A.
Casey
,
R. J.
Sanderson
,
M. A.
White
, and
R.
Sun
,
Rev. Sci. Instrum.
76
,
093906
(
2005
).
You do not currently have access to this content.