Two-dimensional (2D) mesoscale simulations of planar shock compression, followed by either reloading or unloading, are presented to examine and understand the quasielastic response observed experimentally in shocked polycrystalline aluminum. The simulations included a realistic representation of the grain ensembles in polycrystalline samples to identify heterogeneous deformation features deemed important to model the continuum measurements. The simulations were carried out using a 2D Lagrangian finite element code (ISP-TROTP) that incorporated elastic-plastic deformation in grain interiors and utilized a contact/cohesive methodology to analyze the response of finite strength grain boundaries. Local heterogeneous response due to mesoscale features was quantified by calculating appropriate material variables along in situ Lagrangian tracer lines and comparing the temporal variation of their mean values with results from 2D continuum simulations. A series of initial calculations ruled out effects due to finite element size and width of the representative volume element used in our simulations. Simulations using a variety of heterogeneities were performed to identify the heterogeneities that were most important for simulating the experimentally observed quasielastic response. These were inclusions, hardened grain boundaries, and microporosity. Mesoscale simulations incorporating these effects demonstrate that the shock-deformed state in polycrystalline aluminum is strongly heterogeneous with considerable variations in lateral stresses. The simulated velocity profiles for a representative reloading and unloading experimental configuration were found to agree well with experimental data, and suggest that hardened grain boundaries are the most likely source of mesoscale heterogeneities in shocked 6061-T6 aluminum. The calculated shear strength and shear stresses were also found to be in good agreement with the reported experimental values.

1.
J.
β€ˆ
Lipkin
and
J. R.
β€ˆ
Asay
,
J. Appl. Phys.
β€ˆ
48
,
182
(
1977
).
2.
J. R.
β€ˆ
Asay
and
J.
β€ˆ
Lipkin
,
J. Appl. Phys.
β€ˆ
49
,
4242
(
1978
).
3.
J. R.
β€ˆ
Asay
and
L. C.
β€ˆ
Chhabildas
, in
Shock Waves and High Strain Rate Phenomena in Metals
, edited by
M. A.
β€ˆ
Meyers
and
L. E.
β€ˆ
Murr
(
Plenum
,
New York
,
1981
), p.
417
.
4.
W. D.
β€ˆ
Reinhart
and
L. C.
β€ˆ
Chhabildas
,
Int. J. Impact Eng.
β€ˆ
29
,
601
(
2003
).
5.
T. J.
β€ˆ
Vogler
,
W. D.
β€ˆ
Reinhart
, and
L. C.
β€ˆ
Chhabildas
,
J. Appl. Phys.
β€ˆ
95
,
4173
(
2004
).
6.
H.
β€ˆ
Huang
and
J. R.
β€ˆ
Asay
,
J. Appl. Phys.
β€ˆ
98
,
33524
(
2005
).
7.
G. R.
β€ˆ
Fowles
,
J. Appl. Phys.
β€ˆ
32
,
1475
(
1961
).
8.
L. M.
β€ˆ
Barker
and
C. D.
β€ˆ
Lundergan
,
J. Appl. Phys.
β€ˆ
35
,
1203
(
1964
).
9.
J. O.
β€ˆ
Erkman
and
G. E.
β€ˆ
Duvall
,
Proceedings of the Ninth Midwestern Mechanics Conference (A Midwestern Mechanics Conference Publication)
,
University of Wisconsin
,
Madison, Wisconsin
, 16–18 August
1965
, p.
179
.
10.
R.
β€ˆ
Hill
,
The Mathematical Theory of Plasticity
(
Oxford University Press
,
New York
,
1998
).
11.
L. M.
β€ˆ
Barker
and
R. E.
β€ˆ
Hollenbach
,
J. Appl. Phys.
β€ˆ
43
,
4669
(
1972
).
12.
Y. M.
β€ˆ
Gupta
, COPS, 1D shock propagation simulation code, Institute for Shock Physics,
Washington State University
, Pullman, WA.
13.
T. J.
β€ˆ
Vogler
and
J. R.
β€ˆ
Asay
,
AIP Conf. Proc.
β€ˆ
CP706
,
617
(
2003
).
14.
J. W.
β€ˆ
Swegle
and
D. E.
β€ˆ
Grady
, in
Metallurgical Applications of Shock-Wave and High Strain Rate Phenomena
, edited by
L. E.
β€ˆ
Murr
,
K. P.
β€ˆ
Staudhammer
, and
M. A.
β€ˆ
Mayer
(
Marcel Dekker, Inc.
,
New York
,
1986
), p.
705
.
15.
J.
β€ˆ
Belak
(private communications, 2005),
Lawrence Livermore National Laboratory
, U.S.A.
16.
J. N.
β€ˆ
Johnson
,
R. S.
β€ˆ
Hixon
,
G. T.
β€ˆ
Gray
β€ˆIII
, and
C. E.
β€ˆ
Morris
,
J. Appl. Phys.
β€ˆ
72
,
429
(
1992
).
17.
J. R.
β€ˆ
Asay
and
L. C.
β€ˆ
Chhabildas
, in
High-Pressure Shock Compression of Solids VI: Old Paradigms and New Challenges
, edited by
Y.
β€ˆ
Horie
,
L.
β€ˆ
Davison
, and
N. N.
β€ˆ
Thadhani
(
Springer
,
New York
,
2003
), p.
57
.
18.
J. R.
β€ˆ
Asay
,
AIP Conf. Proc.
β€ˆ
CP620
,
26
(
2002
).
19.
Y. M.
β€ˆ
Gupta
,
Mater. Res. Soc. Symp. Proc.
β€ˆ
538
,
139
(
1999
).
20.
H. J.
β€ˆ
Kestenbach
and
M. A.
β€ˆ
Meyers
,
Metall. Trans. A
β€ˆ
7A
,
1943
(
1976
).
21.
A. G.
β€ˆ
Dhere
,
H. J.
β€ˆ
Kestenbach
, and
M. A.
β€ˆ
Meyers
,
Mater. Sci. Eng.
β€ˆ
54
,
113
(
1982
).
22.
I. P. H.
β€ˆ
Do
and
D. J.
β€ˆ
Benson
,
Int. J. Plast.
β€ˆ
17
,
641
(
2001
).
23.
R.
β€ˆ
Becker
,
Int. J. Plast.
β€ˆ
20
,
1983
(
2004
).
24.
S. E.
β€ˆ
Schoenfield
,
Int. J. Plast.
β€ˆ
14
,
871
(
1998
).
25.
J. D.
β€ˆ
Clayton
,
J. Mech. Phys. Solids
β€ˆ
53
,
261
(
2005
).
26.
K.
β€ˆ
Yano
and
Y.
β€ˆ
Horie
,
Int. J. Plast.
β€ˆ
18
,
1427
(
2002
).
27.
J.
β€ˆ
Moller
,
Lectures on Random Voronoi Tessellations
(
Springer-Verlag
,
New York
,
1994
).
28.
Z.
β€ˆ
Fan
,
Y.
β€ˆ
Wu
,
X.
β€ˆ
Zhao
, and
Y.
β€ˆ
Lu
,
Comput. Mater. Sci.
β€ˆ
29
,
301
(
2004
).
29.
R.
β€ˆ
Teeter
,
K. M.
β€ˆ
Perkins
,
E.
β€ˆ
Pittman
,
S. K.
β€ˆ
Dwivedi
, and
J. R.
β€ˆ
Asay
, ISP-VORN, Voronoi tesselation code with desired grain size distribution, Institute for Shock Physics,
Washington State University
, Pullman, WA,
2005
.
30.
V.
β€ˆ
Randle
, in
Electron Backscatter Diffraction in Materials Science
, edited by
A. J.
β€ˆ
Schwartz
,
M.
β€ˆ
Kumar
, and
B. L.
β€ˆ
Adams
(
Kluwer Academic
,
Dordrecht
,
2000
).
31.
CUBIT Mesh Generation Environment Volume 1: Users Manual;β€ˆ
Sandia National Laboratory, Report No. SAND94-1100.
32.
S. K.
β€ˆ
Dwivedi
, ISP-PREP, preprocessor for the 2D finite element simulation of the plate impact material property experiment, Institute for Shock Physics,
Washington State University
, Pullman, WA.
33.
S. K.
β€ˆ
Dwivedi
and
Y. M.
β€ˆ
Gupta
, ISP-TROTP, 2D SMP parallel finite element code for mesoscale simulation, Institute for Shock Physics,
Washington State University
, Pullman, WA.
34.
M. L.
β€ˆ
Wilkins
, in
Fundamental Methods in Hydrodynamics
,
Methods in Computational Physics, Advances in Research and Applications
Vol.
3
, edited by
A. B.
β€ˆ
Fernback
and
M.
β€ˆ
Rotenberg
(
Academic
,
New York
,
1964
), p.
1
.
35.
L.
β€ˆ
Seaman
, TROTT, computer program for two-dimensional stress wave propagation,
SRI International
, CA,
1978
.
36.
N. J.
β€ˆ
Carpenter
,
R. L.
β€ˆ
Taylor
, and
M. G.
β€ˆ
Katona
,
Int. J. Numer. Methods Eng.
β€ˆ
32
,
103
(
1991
).
37.
K.-J.
β€ˆ
Bathe
,
Finite Element Procedures
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1996
).
38.
Y.
β€ˆ
Zhang
,
M. W.
β€ˆ
Jessell
, and
B. E.
β€ˆ
Hobbs
,
Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis., Mat. Nat., Sez. 3
β€ˆ
18
,
451
(
1996
).
39.
H. D.
β€ˆ
Espinosa
,
G. L.
β€ˆ
Emore
, and
P. D.
β€ˆ
Zavattieri
, in
Advances in Failure Mechanism in Brittle Materials
, edited by
R. J.
β€ˆ
Clifton
and
H. D.
β€ˆ
Espinosa
(MD-75/AMD-219, 1996), ASME Winter Annual Meeting, Atlanta, GA, Nov.
1996
, p.
119
.
40.
H. D.
β€ˆ
Espinosa
,
S.
β€ˆ
Dwivedi
, and
H.-C.
β€ˆ
Lu
,
Comput. Methods Appl. Mech. Eng.
β€ˆ
183
,
259
(
2000
).
41.
G. T.
β€ˆ
Camacho
and
M.
β€ˆ
Ortiz
,
Int. J. Solids Struct.
β€ˆ
33
,
2899
(
1996
).
42.
S. K.
β€ˆ
Dwivedi
and
H. D.
β€ˆ
Espinosa
,
Mech. Mater.
β€ˆ
35
,
481
(
2003
).
43.
S. K.
β€ˆ
Dwivedi
,
J. L.
β€ˆ
Ding
, and
Y. M.
β€ˆ
Gupta
,
Int. J. Comput. Methods
β€ˆ
2
,
341
(
2005
).
44.
J.-H.
β€ˆ
Fu
,
D. J.
β€ˆ
Benson
, and
M. A.
β€ˆ
Meyers
,
Acta Mater.
β€ˆ
49
,
2567
(
2001
).
45.
G. R.
β€ˆ
Johnson
,
ASME Trans. J. Appl. Mech.
β€ˆ
43
,
439
(
1976
).
You do not currently have access to this content.