Using an emissive probe with an additional compensating electrode, the axial and radial variations of potential are determined in a rf planar magnetron discharge at constant argon flow. The axial potential structure shows the sheath formation near the powered electrode (cathode). In the cathode sheath, the high potential drop in the racetrack region indicates the existence of a strong electric field required for effective sputtering. Results reveal that the potential structure along a line parallel to the surface of the powered electrode exhibits radial variations. Dependence of potential structure in the cathode sheath due to the negative dc self-bias at different applied rf powers has also been observed. The ion density and the electron temperature are measured at different axial and radial positions with the help of a compensating Langmuir probe to correlate with the results found from emissive probe measurements.

1.
R. S.
Nowicki
,
J. Vac. Sci. Technol.
14
,
127
(
1977
).
2.
R. K.
Waits
,
J. Vac. Sci. Technol.
15
,
179
(
1978
).
3.
C.
Deshpandey
and
L.
Holland
,
Thin Solid Films
96
,
265
(
1982
).
4.
H.
Fujita
,
S.
Yagura
,
H.
Ueno
, and
M.
Nagano
,
J. Phys. D
19
,
1699
(
1986
).
5.
V.
Yu Kulikovsky
,
Surf. Coat. Technol.
94
,
428
(
1997
).
6.
J. A.
Thornton
,
J. Vac. Sci. Technol.
15
,
171
(
1978
).
7.
M. K.
Jayaraj
,
A.
Antony
, and
M.
Ramachandran
,
Bull. Mater. Sci.
25
,
227
(
2002
).
8.
M.
Voigt
and
M.
Sokolowski
,
Mater. Sci. Eng., B
109
,
99
(
2004
).
9.
W. H.
Ha
,
M. H.
Choo
, and
S.
Im
,
J. Non-Cryst. Solids
303
,
78
(
2002
).
10.
A.
Grill
,
Cold Plasma in Materials Fabrication
(
IEEE
,
New York
,
1993
).
11.
H.-B.
Valentini
,
Plasma Sources Sci. Technol.
9
,
574
(
2000
).
12.
D.
Bohm
,
The Characteristics of Electrical Discharges in Magnetic Fields
(
McGraw-Hill
,
New York
,
1949
).
13.
K.-U.
Riemann
,
J. Phys. D
24
,
493
(
1991
).
14.
V. Ya.
Martens
,
Tech. Phys.
41
,
5
(
1996
).
15.
R.
Chodura
,
Phys. Fluids
25
,
1628
(
1982
).
16.
G.-H.
Kim
,
N.
Hershkowitz
,
D. A.
Diebold
, and
M.-H.
Cho
,
Phys. Plasmas
2
,
3222
(
1995
).
17.
J. W.
Bradley
,
S.
Thompson
, and
Y.
Aranda Gonzalvo
,
Plasma Sources Sci. Technol.
10
,
490
(
2001
).
18.
J. W.
Bradley
,
S. K.
Karkari
, and
A.
Vetushka
,
Plasma Sources Sci. Technol.
13
,
189
(
2004
).
19.
W. J.
Goedheer
and
P. M.
Meijer
,
IEEE Trans. Plasma Sci.
19
,
245
(
1991
).
20.
K.-U.
Riemann
,
J. Appl. Phys.
65
,
999
(
1989
).
21.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
17
,
338
(
1989
).
22.
K.-U.
Riemann
,
Phys. Fluids B
4
,
2693
(
1992
).
23.
T. M.
Minea
,
J.
Bretagne
,
D.
Pagnon
, and
M.
Touzeau
,
J. Phys. D
33
,
1884
(
2000
).
24.
A.
Sherman
,
Thin Solid Films
113
,
135
(
1984
).
25.
A.
Palmero
,
E. D.
van Hattum
,
W. M.
Arnoldbik
,
A. M.
Vredenberg
, and
F. H. P. M.
Habraken
,
J. Appl. Phys.
95
,
7611
(
2004
).
26.
R. F.
Kemp
and
J. M.
Sellen
, Jr.
,
Rev. Sci. Instrum.
37
,
455
(
1966
).
27.
A. P.
Paranjpe
,
J. P.
McVittie
, and
S. A.
Self
,
J. Appl. Phys.
67
,
6718
(
1990
).
28.
P. A.
Chatterton
,
J. A.
Rees
,
W. L.
Wu
, and
K.
Al-Assadi
,
Vacuum
42
,
489
(
1991
).
29.
E.
Mravlag
and
P.
Krumm
,
Rev. Sci. Instrum.
61
,
2164
(
1990
).
30.
M. Y.
Ye
and
S.
Takamura
,
Phys. Plasmas
7
,
3457
(
2000
).
31.
M. H.
Cho
,
N.
Hershkowitz
, and
T.
Intrator
,
J. Vac. Sci. Technol. A
6
,
2978
(
1988
).
32.
J. W.
Bradley
,
R. A.
Khamis
,
M. I.
Sanduk
,
J. A.
Elliott
, and
M. G.
Rusbridge
,
J. Phys. D
25
,
1443
(
1992
).
33.
D. A.
Diebold
 et al,
Rev. Sci. Instrum.
66
,
434
(
1995
).
34.
R.
Schrittwieser
 et al,
Plasma Phys. Controlled Fusion
44
,
567
(
2002
).
35.
P. N.
Murgatroyd
,
A. K. Y.
Chu
,
G. K.
Richardson
,
D.
West
,
G. A.
Yearley
, and
A. J.
Spencer
,
Meas. Sci. Technol.
2
,
1218
(
1991
).
36.
A. R.
Pal
,
J.
Chutia
, and
H.
Bailung
,
Phys. Plasmas
11
,
4719
(
2004
).
37.
D.
Boruah
,
A. R.
Pal
,
H.
Bailung
, and
J.
Chutia
,
J. Phys. D
36
,
645
(
2003
).
You do not currently have access to this content.