Reactive neutral species densities for various conditions in dual frequency capacitively coupled discharges of ArO2, ArN2, and ArH2 were determined using optical emission spectroscopy, Kr actinometry, and modeling. The reactive neutral species probed in this work include O, O2, N, N2, H, and H2. Densities are reported as a function of pressure (560mTorr), percent Ar in the feed gas (1%–86%), source power (50800W), and bias power (0W, 200W). It was found that increasing the pressure from 5to60mTorr resulted in order of magnitude increases in atomic species densities for all ash chemistries. At 30mTorr, percent dissociation is relatively low (15%) for all species. Also, at 30mTorr, the addition of Ar resulted in a small decrease in N and H densities, but an order of magnitude increase in O density. Based on modeling, it is proposed that the increase in O density is due to an increasing contribution of Penning dissociation with increasing Ar density. Only the source power contributed significantly to O and N radical densities, but 200W bias power generated a significant H radical density above that generated via the source power. Details of these results are discussed in comparison with theory and literature.

1.
M. A.
Worsley
,
S. F.
Bent
,
S. M.
Gates
,
K.
Kumar
,
T.
Dalton
, and
J. C.
Hedrick
,
Mater. Res. Soc. Symp. Proc.
766
,
235
(
2003
).
2.
M. A.
Worsley
,
S. F.
Bent
,
S. M.
Gates
,
N. C. M.
Fuller
,
W.
Volksen
,
M.
Steen
, and
T.
Dalton
,
J. Vac. Sci. Technol. B
23
,
395
(
2005
).
3.
P.-T.
Liu
,
T.-C.
Chang
,
Y.-S.
Mor
, and
S. M.
Sze
,
Jpn. J. Appl. Phys., Part 1
38
,
3482
(
1999
).
4.
T. C.
Chang
 et al.,
J. Electrochem. Soc.
146
,
3802
(
1999
).
5.
D.
Shamiryan
,
M. R.
Baklanov
,
S.
Vanhaelemeersch
, and
K.
Maex
,
J. Vac. Sci. Technol. B
20
,
1923
(
2002
).
6.
T. J.
Dalton
 et al.,
Proceedings of the IEEE 2004 International Interconnect Technology Conference
,
Burlingame, CA
, 7–9 June
2004
, p.
154
.
7.
N. C. M.
Fuller
 et al.,
Proceedings of the ECS 2005 International Semiconductor Technology Conference
,
Shanghai, China
, 15–17 March
2005
, p.
299
.
8.
International Technology Roadmap for Semiconductors
(
ITRS
, Santa Clara, CA,
2001
).
9.
H.
Nagai
,
Y.
Maeda
,
M.
Hiramatsu
,
M.
Hori
, and
T.
Goto
,
Jpn. J. Appl. Phys., Part 2
42
,
L326
(
2003
).
10.
L.
Peters
,
Semicond. Int.
25
,
57
(
2002
).
11.
C.
Waldfried
,
O.
Escorcia
,
Q.
Han
, and
P. B.
Smith
,
Electrochem. Solid-State Lett.
6
,
G137
(
2003
).
12.
A.
Matsushita
 et al.,
Proceedings of the IEEE International Interconnect Technology Conference
,
Burlingame, CA
, 2–4 June
2003
, p. 147.
13.
H. W.
Kim
 et al.,
J. Mater. Sci.
40
,
3543
(
2005
).
14.
H. W.
Kim
,
J. H.
Myung
,
N. H.
Kim
,
C. W.
Chung
,
W. J.
Park
,
C. J.
Kang
,
C. G.
Yoo
, and
D. K.
Choi
,
Vacuum
80
,
193
(
2005
).
15.
T. C.
Chang
,
Y. S.
Mor
,
P. T.
Liu
,
T. M.
Tsai
,
C. W.
Chen
,
Y. J.
Mei
, and
S. M.
Sze
,
Thin Solid Films
398∕399
,
632
(
2001
).
16.
P. T.
Liu
,
T. C.
Chang
,
Y. S.
Mor
,
C. W.
Chen
,
T. M.
Tsai
,
C. J.
Chu
,
F. M.
Pan
, and
S. M.
Sze
,
Electrochem. Solid-State Lett.
5
,
G11
(
2002
).
17.
C. S.
Yang
,
Y. H.
Yu
,
H. J.
Lee
,
K. M.
Lee
, and
C. K.
Choi
,
Thin Solid Films
475
,
150
(
2005
).
18.
A.
Grill
and
V.
Patel
,
J. Electrochem. Soc.
151
,
F133
(
2004
).
19.
J. W.
Coburn
and
M.
Chen
,
J. Appl. Phys.
51
,
3134
(
1980
).
20.
V. M.
Donnelly
,
IEEE International Conference on Plasma Science SO-IEEE Conference Record-Abstracts: The 31st IEEE International Conference on Plasma Science, ICOPS2004
,
Baltimore, MD
, 28 June–1 July
2004
, p.
123
.
21.
J.
Forster
,
1999 IEEE International Conference on Plasma Science SO-IEEE Conference Record-Abstracts: The 26th International Conference on Plasma Science, ICOPS1999
,
Monterey, CA
, 20–24 June
1999
.
22.
V. M.
Donnelly
,
M. V.
Malyshev
,
M.
Schabel
,
A.
Kornblit
,
W.
Tai
,
I. P.
Herman
, and
N. C. M.
Fuller
,
Plasma Sources Sci. Technol.
11
,
A26
(
2002
).
23.
M. R.
Winchester
and
R.
Payling
,
Spectrochim. Acta, Part B
59
,
607
(
2004
).
24.
J. B.
Boffard
,
C. C.
Lin
, and
C. A.
DeJoseph
,
J. Phys. D
37
,
R143
(
2004
).
25.
J. E.
Chilton
,
M. D.
Stewart
, and
C. C.
Lin
,
Phys. Rev. A
62
,
032714
(
2000
).
26.
A.
Dasgupta
,
K.
Bartschat
,
D.
Vaid
,
A. N.
Grum-Grzhimailo
,
D. H.
Madison
,
M.
Blaha
, and
J. L.
Giuliani
,
Phys. Rev. A
65
,
042724
(
2002
).
27.
C. Y.
Chen
,
K.
Bailey
,
Y. M.
Li
,
T. P.
O’Connor
,
Z. T.
Lu
,
X.
Du
,
L.
Young
, and
G.
Winkler
,
Rev. Sci. Instrum.
72
,
271
(
2001
).
28.
N. C. M.
Fuller
,
M. V.
Malyshev
,
V. M.
Donnelly
, and
I. P.
Herman
,
Plasma Sources Sci. Technol.
9
,
116
(
2000
).
29.
R. R.
Laher
and
F. R.
Gilmore
,
J. Phys. Chem. Ref. Data
19
,
277
(
1990
).
30.
M. B.
Schulman
,
F. A.
Sharpton
,
S.
Chung
,
C. C.
Lin
, and
L. W.
Anderson
,
Phys. Rev. A
32
,
2100
(
1985
).
31.
A. H.
Mahan
,
A.
Gallagher
, and
S. J.
Smith
,
Phys. Rev. A
13
,
156
(
1976
).
32.
G. A.
Khayrallah
,
Phys. Rev. A
13
,
1989
(
1976
).
33.
F.
Biraben
,
J. C.
Garreau
,
L.
Julien
, and
M.
Allegrini
,
Rev. Sci. Instrum.
61
,
1468
(
1990
).
34.
K. A.
Berrington
,
P. G.
Burke
, and
W. D.
Robb
,
J. Phys. B
8
,
2500
(
1975
).
35.
A. R.
Filipelli
,
F. A.
Sharpton
,
C. C.
Lin
, and
R. E.
Murphy
,
J. Chem. Phys.
76
,
3597
(
1982
).
36.
R. M.
Frost
,
P.
Awakowicz
,
H. P.
Summers
, and
N. R.
Badnell
,
J. Appl. Phys.
84
,
2989
(
1998
).
37.
H. F.
Winters
,
D. E.
Horne
, and
E. E.
Donaldson
,
J. Chem. Phys.
41
,
2766
(
1964
).
38.
P. C.
Cosby
,
J. Chem. Phys.
98
,
9560
(
1993
).
39.
S. J.
Corrigan
,
J. Chem. Phys.
43
,
4381
(
1965
).
40.
P. C.
Cosby
,
J. Chem. Phys.
98
,
9544
(
1993
).
41.
Y.-K.
Kim
and
M. E.
Rudd
,
Phys. Rev. A
50
,
3954
(
1994
).
42.
Y.-K.
Kim
and
J. P.
Desclaux
,
Phys. Rev. A
66
,
012708
. (
2002
).
43.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley-Interscience
,
New York
,
1994
).
44.
A. D.
Tserepi
and
T. A.
Miller
,
J. Appl. Phys.
77
,
505
(
1995
).
45.
S.
Takashima
,
M.
Hori
,
T.
Goto
,
A.
Kono
, and
K.
Yoneda
,
J. Appl. Phys.
90
,
5497
(
2001
).
46.
S. F.
Adams
and
T. A.
Miller
,
Plasma Sources Sci. Technol.
9
,
248
(
2000
).
47.
A. D.
Tserepi
and
T. A.
Miller
,
J. Appl. Phys.
75
,
7231
(
1994
).
48.
S.
Gomez
,
P. G.
Steen
, and
W. G.
Graham
,
Appl. Phys. Lett.
81
,
19
(
2002
).
49.
C.
Cui
, (private communication).
50.
H.
Singh
, dissertation,
University of California-Berkeley
,
2000
.
51.
C. R.
Aita
and
M. E.
Marhic
,
J. Appl. Phys.
52
,
6584
(
1981
).
52.
W. H.
Breckenridge
and
T. A.
Miller
,
Chem. Phys. Lett.
12
,
437
(
1972
).
53.
J. B.
Lounsbury
,
J. Vac. Sci. Technol.
6
,
838
(
1969
).
54.
L. G.
Piper
,
Chem. Phys. Lett.
28
,
276
(
1974
).
55.
W. R.
Bennett
,
W. L.
Faust
,
R. A.
Mcfarlane
, and
C. K. N.
Patel
,
Phys. Rev. Lett.
8
,
470
(
1962
).
56.
A.
Davison
,
J. C.
Avelar-Batista
,
A. D.
Wilson
,
A.
Leyland
,
A.
Matthews
, and
K. S.
Fancey
,
J. Vac. Sci. Technol. A
21
,
1683
(
2003
).
57.
J.
Balamuta
and
M. F.
Golde
,
J. Chem. Phys.
76
,
2430
(
1982
).
58.
K. A.
Hardy
and
J. W.
Sheldon
,
J. Appl. Phys.
53
,
8532
(
1982
).
59.
J. E.
Velazco
,
J. H.
Kolts
, and
D. W.
Setser
,
J. Chem. Phys.
69
,
4357
(
1978
).
60.
J.
Balamuta
and
M. F.
Golde
,
J. Phys. Chem.
86
,
2765
(
1982
).
61.
H. C.
Kim
and
J. K.
Lee
,
Phys. Plasmas
12
,
1
(
2005
).
62.
S. J.
You
,
H. C.
Kim
,
C. W.
Chung
,
H. Y.
Chang
, and
J. K.
Lee
,
J. Appl. Phys.
94
,
7422
(
2003
).
63.
T.
Kitajima
,
Y.
Takeo
,
Z. L.
Petrovic
, and
T.
Makabe
,
Appl. Phys. Lett.
77
,
489
(
2000
).
64.
J. K.
Lee
,
N. Y.
Babaeva
,
H. C.
Kim
,
O. V.
Manuilenko
, and
J. W.
Shon
,
IEEE Trans. Plasma Sci.
32
,
47
(
2004
).
65.
H. C.
Kim
and
J. K.
Lee
,
Phys. Rev. Lett.
93
,
085003
(
2004
).
66.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
,
J. Phys. D
37
,
697
(
2004
).
You do not currently have access to this content.