Elastic energies of nanostructures are important. The nanostructures are often sufficiently large that Euler-Bernoulli theory (EBT) is adequate. Motivated by recent applications, we use EBT to calculate the bending profile and the scaling of the spring constant of inverted frustums with length and cross sections . We find which differs significantly from that of a straight rod and demonstrates that the shape of the nanorods provides a mean to vary the scaling of the elastic properties.
REFERENCES
1.
M.
DiVentra
, S.
Evoy
, and J. R.
Heflin
, Introduction to Nanoscale Science and Technology
(Springer
, New York
, 2004
).2.
N.
Lobontiu
and E.
Garcia
, Mechanics of Microelectromechanical Systems
(Kluwer
, New York
, 2005
).For recent reviews, see
L.
Zhang
, H.
Ding
, and W.
Chen
, Elasticity of Transversely Isotropic Materials
, Solid Mechanics and its Applications
Vol. 126
(Springer
, New York
, 2006
).3.
See, for example,
M.
Huang
, C.
Boone
, M.
Roberts
, D. E.
Savage
, M. G.
Lagally
, N.
Shaji
, H.
Qin
, R.
Blick
, J. A.
Nairn
, and F.
Liu
, Adv. Mater. (Weinheim, Ger.)
17
, 2860
(2005
).4.
L. D.
Landau
and E. M.
Lifshitz
, Course of Theoretical Physics: Theory of Elasticity
(Butterworth-Heinemann
, Oxford
, 2002
), Vol. 7
;5.
For example, see application of atomic force microscopy cantilevers by
M. A.
Poggi
, A. W.
McFarland
, J. S.
Colton
, and L. A.
Bottomley
, Anal. Chem.
77
, 1192
(2005
).6.
J. H.
Gaines
and E.
Volterra
, J. Acoust. Soc. Am.
39
, 674
(1965
).7.
J. G.
Fan
, D.
Dyer
, G.
Zhang
, and Y.-P.
Zhao
, Nano Lett.
4
, 2133
(2004
).8.
Y.-P.
Zhao
and J.-G.
Fan
, Appl. Phys. Lett.
88
, 103123
(2006
).9.
T.
Karabacak
, J. P.
Singh
, Y.-P.
Zhao
, G.-C.
Wang
, and T.-M.
Lu
, Phys. Rev. B
68
, 125408
(2003
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.