A rigorous method of obtaining the Cu diffusivities in various SiO2-based dielectric materials is proposed. The diffusion profile of Cu ions in a dielectric material is first simulated and the resulting flatband voltage shift (ΔVFB) is compared with the experimental results obtained by CV measurements after bias-temperature stressing (BTS). The evolution of the Cu concentration in dielectric materials is evaluated using a one-dimensional finite differential method with two unknown parameters, the diffusivity, and the maximum solid solubility of Cu ions in the dielectric material. CV measurements are conducted at 1MHz to measure the ΔVFB value of CuSiO2Si capacitors before and after BTS at an electric field of +1.0MVcm and in the temperature range between 200 and 275°C. With this process, the Cu diffusivities in thermally grown SiO2, oxynitride and SiO2 deposited by plasma-enhanced chemical vapor deposition, and methyl-doped SiO2 are found to be 2.22×103exp(1.54eVkT), 3.09×105exp(1.34eVkT), 2.59×105exp(1.18eVkT), and 6.07×109exp(0.71eVkT), respectively.

1.
International Technology Roadmap for Semiconductors
, Interconnects, 45 (
2005
); http://www.itrs.net/Links/2005ITRS/Interconnect2005.pdf
2.
J. D.
McBrayer
,
R. M.
Swanson
, and
T. W.
Sigmon
,
J. Electrochem. Soc.
133
,
1242
(
1986
).
3.
J.-Y.
Kwon
,
K.-S.
Kim
,
Y.-C.
Joo
, and
K.-B.
Kim
,
Jpn. J. Appl. Phys., Part 2
41
,
L99
(
2002
).
4.
R. G.
Wilson
,
F. A.
Stevie
, and
C. W.
Magee
,
Secondary Ion Mass Spectroscopy; A Practical Handbook for Depth Profiling and Bulk Impurity Analysis
(
Wiley
,
New York
,
1989
), Chap. 2.
5.
R. S.
Bauer
,
R. Z.
Bachrach
, and
L. J.
Brillson
,
Appl. Phys. Lett.
37
,
1006
(
1980
).
6.
R. S.
Muller
and
T. I.
Kamins
,
Device Electronics for Integrated Circuits
, 2nd ed. (
Wiley
,
New York
,
1986
), Chap. 8.
7.
E. H.
Snow
,
A. S.
Grove
,
B. E.
Deal
, and
C. T.
Sah
,
J. Appl. Phys.
36
,
1664
(
1965
).
8.
E. H.
Snow
and
B. E.
Deal
,
J. Electrochem. Soc.
113
,
263
(
1966
).
9.
A. L. S.
Loke
,
C.
Ryu
,
C. P.
Yue
,
J. S. H.
Cho
, and
S. S.
Wong
,
IEEE Electron Device Lett.
17
,
549
(
1996
).
10.
H.
Cui
,
I. B.
Bhat
,
S. P.
Murarka
,
H.
Lu
,
W.-J.
Hsia
, and
W.
Catabay
,
J. Vac. Sci. Technol. B
20
,
1987
(
2002
).
11.
D.
Gupta
,
K.
Vieregge
, and
K. V.
Srikrishnan
,
Appl. Phys. Lett.
61
,
2178
(
1992
).
12.
Y.
Shacham-Diamand
,
A.
Dedhia
,
D.
Hoffstetter
, and
W. G.
Oldham
,
J. Electrochem. Soc.
140
,
2427
(
1993
).
13.
O. L.
Anderson
and
D. A.
Stuart
,
J. Am. Ceram. Soc.
37
,
573
(
1954
).
14.
S.
Rogojevic
,
A.
Jain
,
W. N.
Gill
, and
J. L.
Plawsky
,
J. Electrochem. Soc.
149
,
F122
(
2002
).
15.
F.
Faupel
,
D.
Gupta
,
B. D.
Silverman
, and
P.
Ho
,
Appl. Phys. Lett.
55
,
357
(
1989
).
You do not currently have access to this content.