We propose an elastic-anisotropy measure. Zener’s familiar anisotropy index A=2C44(C11C12) applies only to cubic symmetry [Elasticity and Anelasticity of Metals (

University of Chicago Press
, Chicago, 1948), p. 16]. Its extension to hexagonal symmetry creates ambiguities. Extension to orthorhombic (or lower) symmetries becomes meaningless because C11C12 loses physical meaning. We define elastic anisotropy as the squared ratio of the maximum/minimum shear-wave velocity. We compute the extrema velocities from the Christoffel equations [M. Musgrave, Crystal Acoustics (
Holden-Day
, San Francisco, 1970), p. 84
]. The measure is unambiguous, applies to all crystal symmetries (cubic-triclinic), and reduces to Zener’s definition in the cubic-symmetry limit. The measure permits comparisons between and among different crystal symmetries, say, in allotropic transformations or in a homologous series. It gives meaning to previously unanswerable questions such as the following: is zinc (hexagonal) more or less anisotropic than copper (cubic)? is alpha-uranium (orthorhombic) more or less anisotropic than delta-plutonium (cubic)? The most interesting finding is that close-packed-hexagonal elements show an anisotropy near 1.3, about half that of their close-packed-cubic counterparts. A central-force near-neighbor model supports this finding.

1.
C.
Zener
,
Elasticity and Anelasticity of Metals
(
University of Chicago Press
,
Chicago
,
1948
), p.
16
.
2.
H.
Olijnik
and
A.
Jephcoat
,
Solid State Commun.
115
,
335
(
2000
).
3.
A.
Schmitz
,
M.
Chandrasekaran
,
G.
Ghosh
, and
L.
Delaey
,
Acta Metall.
37
,
3151
(
1989
).
4.
R.
Sankarasubramanian
,
C.
Jog
, and
T.
Abinandanan
,
Metall. Mater. Trans. A
33
,
1083
(
2002
).
5.
X.
Han
,
N.
Ghoniem
, and
Z.
Wang
,
Philos. Mag.
83
,
3705
(
2003
).
6.
C.-S.
Man
,
J. Elast.
39
,
165
(
1995
).
7.
A.
Seeger
and
W.
Wasserbäch
,
Phys. Status Solidi A
189
,
27
(
2002
).
8.
Y.
Bogdanov
,
S.
Kotrechko
,
Y.
Meshkov
, and
V.
Kosarchuk
,
Phys. Met. Metallogr.
71
,
170
(
1991
).
9.
V.
Tvergaard
and
J.
Hutchinson
,
J. Am. Chem. Soc.
71
,
157
(
1988
).
10.
S.
Sukumaran
and
G.
Ranganath
,
J. Phys. II
7
,
583
(
1997
).
11.
H.
Oda
,
S.
Isoda
,
Y.
Inoue
, and
I.
Suzuki
,
J. Geophys. Res.
99
,
1551
(
1994
).
12.
C.
Cousins
,
J. Phys. C
2
,
765
(
1968
).
13.
H.-R.
Wenk
and
P.
Van Houtte
,
Rep. Prog. Phys.
67
,
1367
(
2004
).
14.
H.-R.
Wenk
,
I.
Lonardelli
,
J.
Pehl
,
J.
Devine
,
V.
Prakapenka
,
G.
Shen
, and
H.-K.
Mao
,
Earth Planet. Sci. Lett.
226
,
507
(
2004
).
15.
H.
Ledbetter
,
J. Phys. Chem. Ref. Data
6
,
1181
(
1977
).
16.
M.
Musgrave
,
Crystal Acoustics
(
Holden-Day
,
San Francisco
,
1970
), p.
84
.
17.
A.
Every
and
A.
McCurdy
,
Crystal and Solid State Physics
,
Landolt-Bornstein, New Series, Group III
, Vol.
29a
(
Springer
,
Berlin
,
1992
).
18.
H.
Ledbetter
and
S.
Kim
,
Handbook of Elastic Properties of Solids, Liquids, and Gases
(
Academic
,
San Diego
,
2001
), Vol.
II
, pp.
97
106
.
19.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford
,
London
,
1954
), Eqs. (11.18) and (12.2).
20.
R.
Johnson
,
Phys. Rev. B
6
,
2094
(
1972
).
21.
R.
Johnson
,
Phys. Rev. B
9
,
1304
(
1974
).
22.
Dynamical Theory of Crystal Lattices
(Ref. 19), p.
149
.
23.
G.
Leibfried
, in
Handbuch der Physik
(
Springer
,
Berlin
,
1955
), pp.
104
324
and
207
.
24.
L.
Fast
,
J.
Wills
,
B.
Johansson
, and
E.
Eriksson
,
Phys. Rev. B
51
,
17431
(
1995
).
25.
H.
Ledbetter
,
Handbook of Elastic Properties of Solids, Liquids, and Gases
(Ref. 18), Vol.
III
, pp.
313
324
.
26.
H.
Ledbetter
and
A.
Migliori
, LAUR Report No. 05-1800 (unpublished).
27.
D.
Young
,
Phase Diagrams of the Elements
(
University of California
,
Berkeley
,
1976
), p.
215
.
28.
A.
Crocker
,
J. Nucl. Mater.
41
,
167
(
1971
).
29.
A.
Lawson
(personal communication).
30.
J.
Donohue
,
Structures of the Elements
(
Krieger
,
Malibar, FL
,
1982
), p.
129
.
31.
Dynamical Theory of Crystal Lattices
(Ref. 19), Eqs. (12.4) and (12.5).
You do not currently have access to this content.