Calorimetric data of primary crystallization is usually interpreted in the framework of the Kolmogorov [Dokl. Akad. Nauk SSSR1, 355 (1937)], Johnson and Mehl [Trans. AIME135, 416 (1939)], and Avrami [J. Chem. Phys.7, 1103 (1939); 8, 212 (1940); 9, 177 (1941)] (KJMA) theory. However, while the KJMA theory assumes random nucleation and exhaustion of space by direct impingement, primary crystallization is usually driven by diffusion-controlled growth with soft impingement between the growing crystallites. This results in a stop of the growth before the space is fully crystallized and induces nonrandom nucleation. In this work, phase-field simulations are used to check the validity of different kinetic models for describing primary crystallization kinetics. The results show that KJMA theory provides a good approximation to the soft-impingement and nonrandom nucleation effects. Moreover, these effects are not responsible of the slowing down of the kinetics found experimentally in the primary crystallization of glasses.

1.
C.
Zener
,
J. Appl. Phys.
21
,
950
(
1949
).
2.
H. B.
Aaron
,
D.
Fainstein
, and
G.
Kotler
,
J. Appl. Phys.
41
,
4404
(
1970
).
3.
W. W.
Mullins
and
R. F.
Sekerka
,
J. Appl. Phys.
34
,
323
(
1963
).
4.
Y.
Couder
,
J.
Maurer
,
R.
González-Cinca
, and
A.
Hernández-Machado
,
Phys. Rev. E
71
,
031602
(
2005
).
5.
U.
Koster
,
U.
Herold
,
H. G.
Hillenbrand
, and
J.
Denis
,
J. Mater. Sci.
15
,
2125
(
1980
).
6.
M. T.
Clavaguera-Mora
,
N.
Clavaguera
,
D.
Crespo
, and
T.
Pradell
,
Prog. Mater. Sci.
47
,
559
(
2002
).
7.
A. N.
Kolmogorov
,
Dokl. Akad. Nauk SSSR
1
,
355
(
1937
).
8.
W. A.
Johnson
and
P. A.
Mehl
,
Trans. AIME
135
,
416
(
1939
).
9.
M.
Avrami
,
J. Chem. Phys.
7
,
1103
(
1939
);
M.
Avrami
,
J. Chem. Phys.
9
,
177
(
1941
).
10.
J. W.
Christian
,
The Theory of Transformations in Metals and Alloys
(
Pergamon
,
Oxford
,
1975
).
11.
T.
Pradell
,
D.
Crespo
,
N.
Clavaguera
, and
M. T.
Clavaguera-Mora
,
J. Phys.: Condens. Matter
10
,
3833
(
1998
).
12.
A.
Korobov
,
J. Math. Chem.
24
,
261
(
1998
).
13.
V.
Sessa
,
M.
Fanfoni
, and
M.
Tomellini
,
Phys. Rev. B
54
,
836
(
1996
).
14.
P.
Uebele
and
H.
Hermann
,
Modell. Simul. Mater. Sci. Eng.
4
,
203
(
1996
).
15.
E.
Pineda
,
T.
Pradell
, and
D.
Crespo
,
Philos. Mag. A
82
,
107
(
2002
).
16.
M. P.
Shepilov
and
D. S.
Baik
,
J. Non-Cryst. Solids
171
,
141
(
1994
).
17.
D. P.
Birnie
and
M. C.
Weinberg
,
J. Chem. Phys.
103
,
3742
(
1995
).
18.
F. S.
Ham
,
J. Phys. Chem. Solids
6
,
335
(
1958
).
20.
K. F.
Kelton
,
J. Non-Cryst. Solids
163
,
283
(
1993
).
21.
O. R.
Myhr
and
O.
Grong
,
Acta Mater.
48
,
1605
(
2000
).
22.
D. R.
Uhlmann
,
J. Non-Cryst. Solids
7
,
337
(
1972
).
23.
D.
Hampel
,
A.
Pundt
, and
J.
Hesse
,
J. Phys.: Condens. Matter
4
,
3195
(
1992
).
24.
A.
Cserei
,
J.
Jiang
,
F.
Aubertin
, and
U.
Gonser
,
J. Mater. Sci.
29
,
1213
(
1994
).
25.
D.
Jacovkis
,
Y.
Xiao
,
J.
Rodriguez-Viejo
,
M. T.
Clavaguera-Mora
, and
N.
Clavaguera
,
Acta Mater.
52
,
2819
(
2004
).
26.
M. P.
Shepilov
,
J. Non-Cryst. Solids
208
,
64
(
1996
).
27.
D. R.
Allen
,
J. C.
Foley
, and
J. H.
Perepezko
,
Acta Mater.
46
,
431
(
1997
).
28.
H.
Hermann
,
Europhys. Lett.
41
,
245
(
1998
).
29.
H.
Hermann
,
Europhys. Lett.
51
,
127
(
2000
).
30.
R.
González-Cinca
,
L.
Ramírez-Piscina
,
J.
Casademunt
, and
A.
Hernández-Machado
,
Phys. Rev. E
63
,
051602
(
2001
).
31.
S. L.
Wang
,
R. F.
Sekerka
,
A. A.
Wheeler
,
B. T.
Murray
,
S. R.
Coriell
,
R. J.
Braun
, and
G. B.
McFadden
,
Physica D
69
,
189
(
1993
).
32.
L.
Granasy
,
T.
Pusztai
, and
J. A.
Warren
,
J. Phys.: Condens. Matter
16
,
R1205
(
2004
).
33.
K. R.
Elder
and
M.
Grant
,
Phys. Rev. E
70
,
051605
(
2004
).
34.
S.
Chan
,
J. Chem. Phys.
67
,
5755
(
1977
).
35.
P.
Bruna
, Ph.D. thesis,
Universitat Politècnica de Catalunya
.
36.
J. D.
Gunton
,
J. Stat. Phys.
95
,
903
(
1999
).
37.
E.
Pineda
and
D.
Crespo
,
J. Non-Cryst. Solids
317
,
85
(
2003
).
38.
E.
Pineda
,
P.
Bruna
, and
D.
Crespo
,
Philos. Mag.
84
,
2023
(
2004
).
39.
E.
Pineda
,
P.
Bruna
, and
D.
Crespo
,
Phys. Rev. E
70
,
066119
(
2004
).
You do not currently have access to this content.